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1 Introduction

This summary report contains an overview of work performed under the work package entitled “MS-
20IN020107 - BISON advanced numerical model development and usability improvements - INL”, which
is focused on the development and support of the fuel performance code BISON [1]. The second chapter
lists FY20 milestones titles, completion schedule, and milestone level. Subsequent chapters summarize and
demonstrate completion of milestones and activities. The last chapter outlines FY21 proposed future work.

1.1 Executive summary

Improvements were made to the engineering scale fuel performance code BISON in several key areas.
Mechanical and thermal contact solves are an important component of light water reactor fuel simulation, in
which the closing of a gas gap between fuel and cladding largely governs the thermomechanical properties
of a fuel rod. We implemented a novel mortar method using dual basis functions, which permit a complexity
reduction of the numerical solve. This new capability was demonstrated and proven to work in chapter 3.
Thermal contact was also improved through the addition of missing terms to the Jacobian matrix, resulting
in a tangible performance increase.
With a growing and maturing code base we emphasized the reduction in complexity of the user facing

part of BISON, namely the input file syntax. We realized that certain frequent use cases dominate the
application of BISON. To simplify these frequent use cases, that are based on common reactor concepts, we
developed a short hand syntax that removes repetitive boilerplate from our input files. All the physics and
parameterizations required for common nuclear materials (including thermal and mechanical properties) are
available through compact action block in BISON input files introduced in chapter 4. For the advanced user,
each of these compact blocks can be automatically expanded to enable full customizability.
In chapter 5 we present work on improving the convergence behavior of systems with multiple inelastic

mechanics models applied (such as creep, relocation, smeared cracking). Analysts have identified these
simulations as challenging for BISON. We have worked on converting large portions of the BISON physics
models over to the new automatic differentiation system. Automatic differentiation provides a perfect pre-
conditioning matrix and can improve the robustness and accelerate the numerical convergence of simulations
significantly. We have demonstrated this on several use cases.
To facilitate the uptake of BISON by users of theWindows operating systemwe investigated the possibility

of building executables on that platform directly. As described in chapter 6 this proved challenging.
While substantial headway was made resulting in multiple patches to MOOSE and libMesh, ultimately our
recommendation is to utilize the Windows Subsystem for Linux in its version 2 (WSL2), which is available
on Windows 10, to build BISON executables. We have documented the process and have improved user
tools for building BISON input files to support this approach.
A large software product such as BISON requires significant effort to maintain a high software quality

standard. In FY20 BISON was audited and found to comply with the NQA-1 standard. A growing user base
requires support and at the same time is a valuable resource for feedback. We conducted our first BISON
user survey. These efforts are summarized in chapter 7.
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2 Milestone summary and completion schedule

FY-2020 Milestones and the completion dates are listed in Table 2.1. The milestones are listed by topic.
Following chapters contain a short description of each milestone and references to related detailed documen-
tation. Where applicable, a representative technical result from the work is included.

Table 2.1: FY-2020 Milestones for BISON advanced numerical model development and usability improve-
ments

Milestone Completion Date MS Level
Contact improvements throughMortar and Automatic Dif-
ferentiation

8/31 M3

Reduced complexity Bison input files 7/31 M3
Improve numerical convergence for stacked inelastic mod-
els

7/31 M3

Turn-key executable Bison for redistribution 3/31 ACT
Identify and address remaining issues in design and user
documentation to ensure full NQA-1 compliance and doc-
ument usability improvements

9/30 M2
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3 BISON Contact Improvement

Most nuclear fuel systems analyzed by BISON incorporate fuel surrounded by one or more protective layers
of either cladding or other materials that contain the fuel and fission products. Capturing the effects of
the mechanical and thermal interactions between these materials is essential for accurate modeling of the
performance of the fuel system. These interactions are modeled in BISON using contact enforcement
techniques, which allows for large relative sliding between these materials.
Both mechanical and thermal contact inherently introduce significant nonlinearities to the system of solved

nonlinear equations. Because of this, efforts to improve BISON’s robustness have often focused on improving
the handling of contact. With the preconditioned Jacobian-Free Newton Krylov (JFNK) scheme used for
most BISON simulations for robustness improvements improving the accuracy of the Jacobian contributions
for a given physics model is often the initial focus. Prior efforts to improve contact robustness have largely
focused on improving the Jacobian contributions for mechanical contact, but thermal contact is also an
important source of nonlinearities, although it has not received as much focus.
Efforts to improve contact robustness in BISON in Fiscal Year 2020 have focused on three main areas:

1. Improved Jacobian entries for traditional node/face thermal contact algorithms: Prior to the
work documented here, some of the entries in the Jacobian matrix corresponding to coupling of the
response between the two interacting surfaces in thermal contact were not implemented. These entries
were added, and resulted in significant robustness and speed improvements for most BISON models
that use the standard contact algorithms.

2. Testing of mortar contact enforcement algorithms for BISON models: Mortar methods offer
the potential for significant further improvements both in solution accuracy and robustness over the
node/face algorithms that are currently used for most BISON simulations. General-purpose methods
for mortar-based mechanical and thermal contact were developed in prior years, but had not yet been
tested on BISON simulations. This work focused on developing mortar-based implementations of the
thermal contact models used by BISON, and on applying mortar contact for the first time in practical
BISON simulations.

3. Development of advanced dual-mortar contact enforcement algorithms: A dual-basis version of
the mortar formulation that offers improved characteristics regarding its interface to the solver has
been implemented and tested on basic problems.

Details of these developments are provided in the following sections. It is important to note that at the
current time, the mortar contact implementations in BISON are limited to two dimensions (2D). While they
offer the potential for significant improvements in solution robustness and accuracy, these methods will still
require more development before they are fully usable for all production BISON simulations. For this reason,
in addition to pushing forward application and development of mortar methods, some of the work conducted
here was also focused on improving the node/face algorithm, which is currently used in production and will
likely be continued for a significant time in the future.
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3.1 Improved Jacobian Entries for Thermal Contact

Thermal contact in MOOSE/BISON ultimately involves computing a heat flux between two surfaces that
are dependent both on the size of the gap between the surfaces and the temperatures of the two surfaces. In
addition to the mortar algorithms still under development, two variants of a node/face enforcement algorithm
are available in BISON, and are currently used for the majority of BISON models:

1. A true node/face algorithm computes the flux at the locations of nodes on a designated secondary side
of the interface, and applies integrated fluxes as point sources at the locations of the secondary nodes
and their projected positions on the primary side of the interface.

2. A “quadrature-based” variant of the node/face algorithm creates pseudo-nodes at the quadrature points
on both surfaces involved in the contact interaction, and applies integrated fluxes at these points on
both faces. These fluxes are computed separately on the two sides of the interface, and this technique
generally produces results that are smoother than those of the true node/face algorithm. This technique
is currently used by the majority of BISON models.

Both of these techniques are implemented using the same set of classes, and share significant code.
For coupled thermomechanical contact, the effect of the contact constraints on the residual for the thermal

and mechanical degrees of freedom associated with a contact interaction can be expressed as:
∆ru,p
∆ru,s
∆r t ,p
∆r t ,s

 =

Kuu,pp Kuu,ps Kut ,pp Kut ,ps

Kuu,sp Kuu,ss Kut ,sp Kut ,ss

K tu,pp K tu,ps K tt ,pp K tt ,ps

K tu,sp K tu,ss K tt ,sp K tt ,ss



∆up

∆us

∆tp
∆ts

 (3.1)

where ∆r is the change in the residual due to contact, u is the vector of displacement degrees of freedom
and t is the vector of temperature degrees of freedom. The u and t subscripts indicate the displacement and
temperature variables, and the p and s subscripts indicate the primary and secondary surfaces.

The terms in the Jacobian matrix in Equation 3.1 that were already implemented prior to the present work
are shown in black. As part of the present effort to improve contact robustness, two separate change sets that
were merged into MOOSE implement the terms shown in red and blue, which contain the derivatives of the
flux applied to one side with respect to the temperature and displacement on the other side of the interface.
These terms are all fully implemented for the “quadrature-based” option, which is most commonly used,
while all terms except for K tt ,ps are implemented for the pure node/face algorithm.

The default algorithm for preconditioning inBISONand allMOOSE-based applications is a block-diagonal
approach, which only includes coupling between the degrees of freedom pertaining to a given variable, so
there is no coupling between temperature and displacement by default. Because the terms highlighted in
blue in Equation 3.1 were not previously implemented, the Jacobian had significant errors, and using the full
tangent matrix for preconditioning often had the effect of decreasing robustness and increasing run-time.
Adding the terms in red affected all BISON analyses that include contact (because they are part of the
block-diagonal matrix). Because they are in the off-diagonal blocks of the matrix, the terms in blue only
have an effect on the solution if those off-diagonal blocks are included in the Jacobian.
Historically, very fewBISON analyses actually used the off-diagonal Jacobian blocks, in large part because

the newly-implemented terms were missing, which, in many cases, it actually hurt performance by including
them. Adding the sets of terms described here has had a significant positive benefit for analyses that use only
block-diagonal preconditioning, and an even greater benefit if the full Jacobian is used. To assess the effects
of these changes, timing of the full suite of BISON assessment cases was evaluated before and after these
changes, as described in the following section.
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3.1.1 Assessment Suite Performance Analysis

The addition of the cross-gap coupling terms to the Jacobian in BISON had a significant positive impact
on the run-time performance of its assessment cases. To take full advantage of these code changes, it is
important to use the full matrix for preconditioning, rather than the block diagonal matrix, which was used
prior to these changes by the majority of assessment cases.
To assess the impact of the Jacobian improvements on run time, an ad-hoc statistical analysis was

performed to quantify their impact and provide insight into which specific assessment cases benefitted from
these changes. The analysis was performed by gathering three independent runs of the full BISON assessment
suite with and without the changes. The reference runs were gathered without the changes taken from the
January 1, 2020, release of BISON, establishing the control group for the test. These cases did not use the full
tangent matrix for preconditioning, instead using a version of the code shortly before the cross-gap coupling
terms were added. The other three runs were collected independently and include the cross-gap coupling
terms, and also include modifications to the input file to use the full tangent matrix for preconditioning.
Assessment cases that did not pass all three runs both before and after the changes were dropped from

the analysis. Dropping these cases allowed for a more accurate comparison by not taking into account tests
that may have had inaccurate performance times due to crashing or timing out. We also only looked at
current assessment cases that utilize the thermal contact model as these were the cases that would’ve been
the most heavily impacted due to the code-change. As a result, 79 cases out of 282 were compared. Many
of these cases were new additions with no previous data to compare. Future analyses will take these cases
into account.
While the mean percent change in run times was −7.65%, many cases saw much larger improvements.

Figure 3.1 compares the impact of the code changes for each assessment case. A very small number of
cases showed a significant slowdown when using these changes. These cases are the subject of ongoing
investigation.

11



FASTER SLOWER

−100% −50% 0% 50% 100% −100% 0% 100% 200% 300% 400%

mld_p0012

mld_p0007

mld_p0023

x447

mld_p0033

mld_p0025

PK11

mld_p0018

mld_p0011

mld_p0028

mld_p0008

mld_p0010

mld_p0022

mld_p0021

mld_p0031

mld_p0009

mld_p0026

mld_p0019

mld_p0032

mld_p0024

Riso_GE7_smeared_cracking_creep

IFA_432_rod2

FK05

IFA_431_rod1

IFA_535_rod_812

PK6S

PK62

RE_Ginna_rodlet_4

Riso_AN4

IFA_650_9_part1

IFA_431_rod3

IFA_431_rod2

IFA_432_rod3

IFA_650_10_part1

IFA_432_rod1

RE_Ginna_rodlet_4_1pt5

IFA562_15

RE_Ginna_rodlet_2

IFA515

IFA562_16

27_2b

FK03

FK06

IFA_650_10_part2

FK03_ccm

MT4_1−1kW

FK02

FK09

MT4_1−2kW

mld_p0027

mld_p0014

mld_p0016

mld_p0030

mld_p0001

TSQ002

mld_p0029

TSQ002_1pt5

mld_p0013

mld_p0015

mld_p0004

mld_p0017

mld_p0003

Riso_II5

mld_p0002

REP_Na_10

mld_p0005

mld_p0006

Riso_GE7_1pt5

IFA562_17

IFA_650_2

TSQ022_1pt5

IFA_535_rod_809

x441

BN1X3

TSQ022

PK13

mld_p0020

AREVA_idealized_case

FK07

Percent Change

A
ss

es
sm

en
t C

as
e

Figure 3.1: Assessment cases that were significantly impacted by the new addition.

3.1.2 Conclusions and Future Work

Adding the missing Jacobian terms outlined in Equation 3.1 resulted in significant run-time and robust-
ness improvements in models that use the “quadrature-based” option for thermal contact together with the
node/face mechanical contact algorithm. The Jacobian matrix now accounts for all interactions between the
degrees of freedom involved in contact. It is still a known issue that not all of these entries are completely
correct because computing the derivatives of the BISON contact model is non-trivial. Further work to refine
these terms would give further, less dramatic, improvements in solution robustness. The framework for
including all terms has now been developed, so once the mathematical form of those derivatives is refined,
including corrected forms would be relatively straightforward.
Although there is still some room for improvements in the Jacobians for node/face contact, they are now

largely correct. Future work in contact enforcement in BISON will largely be focused on development of
mortar methods, as described in the following sections. Mortar methods are expected to improve both the
accuracy and robustness of the solution.
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3.2 Mortar-Based Thermomechanical Contact

The node/face algorithm employed in most BISON simulations suffers from the fact that its behavior can
be quite discontinuous, which presents challenges for both solution robustness and accuracy. When a node
or integration point is suddenly projected onto a new face on the primary surface due to relative movement
of the contact surfaces, a force or excitation to the system will appear. From a physical standpoint, the
enforcement of thermal and mechanical contact on an intermediate subdomain, such as the one carried
out by mortar, ensures that solids gradually enter into contact. That is, mortar segments — on which
constraints are enforced — are created incrementally based on the contacting bodies’ geometries. This
gradual approach is more natural, as it does not rely on discrete evaluating points, and improves the system’s
convergence properties. On the other hand, from a computational perspective, the work performed this
fiscal year on thermomechanical contact ensures that this key aspect of the simulation is compliant with the
effort to enable automatic differentiation in BISON. In other words, the C++ classes created to enable mortar
thermomechanical contact allow for an automatic computation of the Jacobian of the generalized forces,
which may act on temperature and displacement variables.
Mortar enforcement of thermal and mechanical contact was previously available in MOOSE, but had not

yet been developed to the point where it could be tested on realistic fuel performance models. Notably, there
was no way to use the gap conductance model employed for light water reactor (LWR) fuel performance
simulations. In this fiscal year, a mortar implementation of the LWR gap conductance model was developed
and tested.

3.2.1 Implementation Details

In its current form, the new mortar-based gap conductance class computes the overall gap conductance in
the following way

hgap = hg + hr + hs (3.2)

where hg is the overall gas conductance, which takes into account the various gases present, hr is the
conductance due to radiation, and hs is the contribution to conductance due to solid-solid contact.
Mortar contact can be set up using a MOOSE Action, which takes care of the creation of MOOSE and

BISON objects, including constraints, auxiliary variables, and auxiliary kernels. An example of how the
block for mortar thermal contact looks in a BISON input file is shown in the following excerpt:

[ThermalContactMortar]
[./thermal_contact]

variable = lm
secondary_variable = temp
primary_boundary = 100
primary_subdomain = 10000
secondary_boundary = 101
secondary_subdomain = 10001

emissivity_clad = 0.8
emissivity_fuel = 0.5
gascond_scalef = 1.0
contact_pressure = frictionless_normal_lm

min_gap = 1e-5
meyer_hardness_model = MATPRO

13



interaction_layer = true
layer_thickness = layer_thickness_action
use_displaced_mesh = true

[../]
[]

The Mortar action sets up all the necessary variables needed to perform an LWR simulation. Additional
command blocks to create lower-dimensional blocks can bemanually added by the user or through the contact
action. In the cases presented here, the lower-dimensional blocks were created in the input file as follows

[Mesh]
...
[./secondary]

type = LowerDBlockFromSidesetGenerator
new_block_id = 10001
new_block_name = ’secondary_lower’
sidesets = ’10’ # pellet_outer_surface
input = smeared_pellet_mesh

[../]
[./primary]

type = LowerDBlockFromSidesetGenerator
new_block_id = 10000
sidesets = ’5’ # clad_inside_right
new_block_name = ’primary_lower’
input = secondary

[../]
[]

On these lower-dimensional blocks, the mortar constraints are enforced through Lagrange multipliers.
NormalMortarMechanicalContact constraint allows the distribution ofmortar constraint residuals through-
out the system dimensions.
The implementation has been tested in a small problem and an LWR assessment case, and compared to

the node on face thermomechanical results, as shown in Sections 3.2.2 and 3.2.3.

3.2.2 Numerical Results of a Simple Problem

To test the mortar implementation of the LWR gap conductance model, a simple problem of two 2D blocks
that come into mechanical and thermal contact is tested here. Though small, this problem includes all the
features and variables involved in a full-scale LWR simulation. That is, all the terms in Equation (3.2) play
a role in the solution. In addition, the parameters shown in Section 3.2.1 are considered here.
Figure 3.2 shows a comparison between this reduced-order LWR-like problem between a mortar approach

and the existing node/face approach. The results in terms of temperature and displacements are very similar.
However, a closer look at the contact surfaces and temperature distribution shows the mortar solution
provides smoother results. These are justified by the constraint enforcement on a subdomain, as opposed to
the point-like enforcement used by the node/face approach.
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(a)

(b)

Figure 3.2: Temperature and contact pressure distributions throughout the two blocks show good agreement
between recently-implemented mortar contact and the existing node on face formulation.

To better show quantification on the temperature results, the difference between the two implementations
is shown in Table 3.1. These results serve as an initial verification of the implementation and allow us to
move on to more challenging cases.
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Node on contacting surface Mortar Node-on-face Difference (%)
0 207.022 203.633 1.66
1 205.784 201.565 2.09
2 205.081 208.036 1.42
3 205.081 208.036 1.42
4 205.784 201.565 2.09
5 207.022 203.633 1.66

Table 3.1: Temperature values at the nodes of the secondary surface.

3.2.3 Numerical Results of an Assessment Case

This subsection shows a brief comparison of one BISON assessment problem simulated with node/face and
mortar thermomechanical constraint enforcement, respectively. The assessment case is a super ramp PK62,
available in BISON’s test suite. As outlined, the changes to the input file to use thermomechanical mortar
are: (1) Creation of lower-dimensional blocks, (2) addition of mortar contact constraints, (3) and addition of
mortar thermomechanical contact action with LWR, nuclear problem parameters.

Figures 3.3 and 3.4 showa side-by-side comparison of the node/face formulationwith kinematic contact and
the mortar formulation results for temperature and mechanical contact pressure. Temperature distributions
in the fuel and clad are very close; maximum and minimum temperatures and their gradients through the
fuel are virtually the same. Contact pressure results are, however, different. Mechanical contact between
fuel and clad is more sensitive to the general system state. For this reason, and due to a slight mismatch in
the time step, mechanical contact is present in a larger area when mortar contact is used at this stage of the
simulation.
Some results on numerical performance for a serial simulation are shown in Figure 3.5. Mortar thermome-

chanical contact converges consistently and in few nonlinear iterations, which is the case for all mortar-based
frictionless contact cases tested. Nonetheless, it requires a larger computer effort. The use of automatic
differentiation and its C++ types tend to add to the wall time per nonlinear iteration, which may partially
explain the results presented in Figure 3.5(b).

3.2.4 Conclusions and Future Work

Thermomechanical contact has been developed to a point where it can be used to simulate and analyze prac-
tical BISON simulations. Despite the initial satisfactory results, future work on the mortar implementation
is necessary to achieve a higher degree of maturity and represent a competitive, computationally efficient
alternative.

The numerical performance results shown in this section highlight the need for investigating strategies
to speed up the mortar implementation and better benefit from its enhanced Jacobian approximations. In
addition, thermomechanical contact needs to be verified against a larger number of assessment cases and
simulation scenarios.
Various other topics remain. Convergence with frictional contact can be challenging and requires the use

of scaling parameters which may sometimes be difficult to select by the user. In addition, MOOSE’s mortar
implementation allows for a point-wise or integral enforcement of the Karush-Kuhn-Tucker conditions. The
difference betwen these two approaches in terms of performance and accuracy on BISON assessment cases
remains to be investigated.
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(a) Mortar (b) Node/face

Figure 3.3: Temperature distribution detail for PK62 BISON assessment case

(a) Mortar (b) Node/face

Figure 3.4: Contact pressure distribution detail for PK62 BISON assessment case
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(a) Step’s nonlinear iterations (b) Accumulated wall time

Figure 3.5: Numerical performance comparison between thermomechanical enforcement approaches

3.3 Dual Mortar Method Development

Mortar methods, which were originally introduced as an abstract domain decomposition technique, are
characterized by: (1) consistently treating the contact interaction through an exact evaluation of the surface
integrals in the weak formulation and (2) an imposition of the occurring interface constraints in a weak
sense [1, 2]. This allows for a variationally consistent treatment of non-penetration and frictional sliding
conditions in the context of mechanical contact analysis [1]. In terms of numerical analysis, the mortar
finite element method allows the coupling of different discretization schemes and triangulations across
subdomains [3].
In the standard mortar finite element method — used to implement thermomechanical contact in BISON

— the matching at the interface is achieved by using a modified trace space that serves as the basis of
Lagrange multipliers. A feasible combination of the primal and trace spaces needs to satisfy the so-called
inf-sup condition in order to acquire the desired stability and approximation properties. An alternative
choice for the discrete Lagrange multiplier space is the dual space [4]. In contrast to the standard mortar
approach, it generates interface coupling conditions that are much easier to realize without impinging upon
the optimality of the method. Besides, the dual mortar approach readily allows local condensation of the
Lagrange multipliers and thus preserves the positive definiteness of the system matrix. This indicates a
broader range of robust preconditioners/solvers can be used to solve the simplified system efficiently.
We investigated a dual-basis function approach for the discretization of the Lagrange multiplier based

mortar contact. Dual basis functions offer the promise of avoiding saddlepoint matrices and the ability to
condense out degrees of freedom. Both result in a system that is easier to converge and is numerically more
well behaved.
There are two common approaches to discretize the primal variable and the Lagrange multipliers: the

standard approach and the dual approach. The standard approach leads to a combination of shape functions
that need to satisfy the inf-sup condition. In contrast, the dual approach constructs dual Lagrange multiplier
shape functions based on a biorthogonal condition with the primal variable shape functions.
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3.3.1 Background

Since the applicability of dual mortar approach is not limited to the type of the continuous problem, we
discuss this approach based on a general discrete quasi-static form

f int(u)+ f co(u,λ) = f ext, (3.3)

where u and λ denote the discretized primal variable and Lagrange multipliers, respectively. The f int
denotes the nonlinear internal forces, f ext denotes the external forces resulting from the standard finite
element discretization. The f co represents the contact forces arising from the integral over the secondary
(slave) interface.

3.3.1.1 Spatial discretization of primal variables

The standard finite element interpolation is employed to approximate the primal variable. We denote the
primal variable by u(x),

u(x) ≈
nu∑
k=1

φk(x)uk, (3.4)

where x represents the spatial location, nu represents the number of degrees of freedom (DOFs) of u, uk

denotes the nodal discrete primal variable, and φk(x) is the standard shape function.

3.3.1.2 Spatial discretization of Lagrange multipliers

The Lagrange multiplier λ defined on the secondary interface is approximated by

λ(x) ≈
nλ∑
k=1

ψk(x)λk, (3.5)

where nλ represents the number of DOFs of λ along the interface, λk denotes the nodal discrete Lagrange
multiplier, and ψk(x) is the basis function. As we employ dual mortar approach, the shape function ψk(x) is
the dual basis function fulfilling the following biorthogonal condition along the contact interface Γ∫

Γ

ψj(x)φk(x) ds = δjk

∫
Γ

φk(x) ds, (3.6)

where δjk is the Kronecker delta function. The biorthogonal condition can be assumed to hold in every
lower-dimensional element Γe (i.e.)∫

Γe

ψj(x)φk(x) ds = δjk

∫
Γe

φk(x) ds. (3.7)

There are many possible choices of dual basis function that satisfy Equation (3.7). For readers interested in
this, refer to (e.g., [4].
In our study, the dual basis functions are assumed to be linear combinations of the standard finite element

shape functions

ψj(x) =

ne ,λ∑
j=1

ak jφk(x), (3.8)

where ne,λ is the number of DOFs of the Lagrange multiplier in the lower-dimensional element Γe, ajk

denote the undetermined coefficients. One can obtain ajk by substituting Equation (3.8) into the element
level biorthogonal condition (i.e., Equation (3.7)). This results in the following local system of equations:

MeAe =De, (3.9)
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where

Me =


∫
Γe
φ1φ1 ds . . .

∫
Γe
φne ,λφ1 ds

...
. . .

...∫
Γe
φ1φne ,λ ds . . .

∫
Γe
φne ,λφne ,λ ds

 ,
Ae =


a1,1 . . . a1,ne ,λ
...

. . .
...

ane ,λ ,1 . . . ane ,λ ,ne ,λ

 ,
De =


∫
Γe
φ1 ds . . . 0
...

. . .
...

0 . . .
∫
Γe
φne ,λ ds

 .
(3.10)

By solving Equation (3.9),Ae =M
−1
e De, we obtain the coefficients for the dual basis functions, and thereby

a linear independent system that is formed by {ψj}
ne ,λ
1 . Solving the local system in Equation (3.9) is

computationally trivial. Therefore, the support of the dual basis ψj is the almost the same as that of the
standard bass φk .

3.3.2 Simplification of the matrix system

After discretization, we can write out the global matrix system. The global matrix loses the positive-definite
property due to the existence of Lagrange multipliers. This typically introduces difficulties to the solution
of the matrix system. Fortunately, by using the dual basis for the discretization of the Lagrange multipliers,
one can simplify the matrix system, and significantly reduce the computational cost. This is achieved by
condensation of the Lagrange multipliers.

The original global system of equations can be written as a block matrix as follows:
K1,ii K1,ic
K1,ci K1,cc M

K2,ii K2,ic
K2,ci K2,cc D

Mᵀ Dᵀ 0



u1,i
u1,c
u2,i
u2,c
λ


=


r1,i
r1,c
r2,i
r2,c
0


(3.11)

where the first subscript (·)1 and (·)2 denote the primary and secondary subdomains, respectively. The
second subscript (·)·,c denotes the part of the subdomain that is in contact and (·)·,i denotes the rest of the
subdomain. The blocks K·, · denote the respective stiffness matrices. The block D represents the coupling
between the Lagrange multipliers and the primal variable in the secondary subdomain. The block M denotes
the coupling between the Lagrange multipliers and the primal variable in the primary subdomain.
Owing to the biorthogonality property of the dual basis functions, the integral matrix D become diagonal.

Thus the discrete Lagrange multipliers can be eliminated by condensation at negligible computational cost,

λ = D−1(r2,c −K2,ciu2,i −K2,ccu2,c). (3.12)

By substituting Equation (3.12) into Equation (3.11), we obtain a simplified linear system of equations that
contains only the primal variable DOFs,

K1,ii K1,ic
K1,ci K1,cc −MD−1K2,ii −MD−1K2,cc

K2,ii K2,ic
Mᵀ Dᵀ



u1,i
u1,c
u2,i
u2,c

 =


r1,i
r1,c −MD−1r2,c

r2,i
0

 (3.13)
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This condensed system (i.e., Equation (3.13)) is positive definite. Therefore, state-of-art iterative solution
techniques, such as multigrid methods [5], are applicable. As a post-processing step, the dual Lagrange
multipliers can be recovered from the displacement following Equation (3.12).

3.3.3 Numerical Results

In this section, we include some initial numerical results to demonstrate the improvements brought by
the dual-mortar approach. Note that the results shown in Sections 3.3.3.2 and 3.3.3.3 correspond to a
mortar-based diffusion problem in two subdomains. Extending the current dual mortar implementation to
mortar-based contact problems is readily achievable and is an ongoing process during this fiscal year.

3.3.3.1 Dual basis functions

The dual basis functions described in Section 3.3 have been implemented in libMesh in order to support the
mortar-based mechanical contact problems in BISON and other problems that employ Lagrange multipliers
to enforce continuity conditions.
As an illustration, we show examples of the standard Lagrange basis functions and corresponding dual-

basis functions in Figures 3.6 and 3.7. Here, linear and quadratic basis functions are plotted for 1D (in
Figure 3.6) and 2D (in Figure 3.7) cases, respectively. All the basis functions are plotted in the reference
frame (in terms of ξ and η) for an element that has unit size in the physical frame. Note that the dual basis
functions keep the original properties of the original basis functions (e.g., order of approximation). The
maximum values of the dual basis functions are not unit or zero at the grid points. However, the sum of all
the local nodal shape functions remain to be 1 at the grid points. This ensures that the values of vector λ
(see Equation (3.5)) are equal to the true value of the discretized Lagrange multiplier variable.

(a) (b)

Figure 3.6: Standard and dual 1D Lagrange basis functions. Standard basis functions (denoted by φi(ξ)) are
shown in black. Dual basis functions (denoted by ψj(ξ)) are shown in blue. (a) Linear basis
functions and (b) quadratic basis functions.
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(a) (b)

Figure 3.7: Standard and dual 2D Lagrange basis function at node (ξ,η) = (−1,−1). Standard basis functions
(denoted by φi(ξ,η)) are shown in gray. Dual basis functions (denoted by ψj(ξ,η)) are shown in
blue. (a) Linear basis function and (b) quadratic basis function.

3.3.3.2 System simplification

As described in Section 3.3.2, part of the global system matrix can be simplified by using the dual basis
functions for the Lagrange multipliers. As a verification, we show the system matrix pattern that uses the
dual basis functions (see Figure 3.8(b)) and compare it with the matrix pattern that uses the standard basis
functions (see Figure 3.8(a)). Note here, we permute the rows and columns of the global matrix a priori in
order to transform it into a block system that matches the matrix system described earlier in Equation (3.11).
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(a) (b)

Figure 3.8: Pattern of system matrix using (a) standard basis function and (b) dual basis function for the
Lagrange multipliers. The submatrix marked by the red rectangle corresponds to the D matrix
in Equation (3.11). Note that D is diagonalized after using the dual basis function.

From Figure 3.8, note that the submatrix D and Dᵀ (marked by the red rectangles) become strict diagonals
when the dual basis functions are utilized for the Lagrange multipliers. Therefore, inverting D is trivial and
condensation of the Lagrange multipliers following Equations (3.12) and (3.13) does not add to the overall
computation load. This is particularly advantageous when the system becomes large.

3.3.3.3 Performance improvement

As an initial implementation, we designed a new preconditioner interface to realize the condensation step
as described in Section 3.3.2. This interface act on the original system (see Equation (3.11)), computes the
condensed system matrix and right-hand-side (see Equation (3.13)), and pass the condensed system to the
solver package (i.e., PETSc). Owing to the positive definiteness property of the condensed system, a wide
range of robust solvers/preconditioners can be utilized.
In Table 3.2, we compare the convergence behavior in terms of the L2-norm of the total residual for

one time step. Here, we utilize BoomerAMG as a preconditioner. It can be seen from Table 3.2 that the
solver converges within 12 linear iterations with condensation. However, without condensation, the solver
significantly stagnates and convergence is unlikely.
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Iteration Number With Condensation Without Condensation
0 5.776114e+00 5.776114e+00
1 9.919965e-01 1.063330e+00
2 7.040158e-01 1.061189e+00
3 6.224583e-01 1.055026e+00
4 8.487218e-02 1.052544e+00
5 5.599553e-02 1.040641e+00
6 5.444969e-02 1.039412e+00
7 2.375990e-03 1.038976e+00
8 1.423721e-03 1.038760e+00
9 6.599375e-04 1.038540e+00
10 3.948003e-06 1.038321e+00
11 9.718431e-11 1.038101e+00
12 6.567258e-14 1.037882e+00

Table 3.2: Convergence behavior in terms of the L2-norm of the total residual for one time step using
BoomerAMG as a preconditioner. Results are shown for system matrices with and without
condensation.

3.3.4 Conclusions and Future Work

A dual mortar method has been implemented in the MOOSE framework. Improvements have been demon-
strated via a diffusion problem with equal value constraint. Specifically, the submatrix D, which couples
the Lagrange multipliers with the primal variable, is diagonalized. This enables static condensation of the
Lagrange multipliers (see Section 3.3.3.2) and results in a positive definite system which can be efficiently
solved using a wider range of robust solvers/preconditioners (see Section 3.3.3.3). Future work in this
topic includes extending current solver interface to mortar-based mechanical contact problems and conduct
verification and scaling studies of the approach.
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4 BISON Ease-of-Use Improvements

The BISON fuel performance code is being developed by INL to analyze a range of fuel forms, from LWRs
to metallic fuel and TRISO fuel, among others, while retaining the flexibility to conduct simulations in 1D
through 3D geometries. These capabilities continue to create the potential for new BISON users. Originally
developed as a research and development tool, BISON presents usage challenges for potential new users
who may be more accustomed to commercially developed finite element analysis (FEA) codes. The efforts
completed for this milestone report demonstrate concrete steps to reduce the complexity of the text-based
BISON input file. Our development efforts completed under this milestone include:

1. Improvement of existing mechanics quantity output input file action capabilities

2. Incorporation of best practice settings for common nuclear material models into predefined action
blocks

3. Expansion of existing fuel rod specific output action capabilities

4. Increased transparency for these and other existing action input file blocks within the editor Atom.

These objectives build on the goals identified in previous FY-19 milestone reports. During FY-19 issues with
expanding user support documentation were addressed and the need for improved ease-of-use within BISON
input files was identified, with a focus on new and beginning BISON users. These needs are addressed by
the development efforts listed above. In the following report section each of these focus areas are discussed,
and this report concludes with a summary of potential future work to continue the accomplishments during
this year.

4.1 Tensor Mechanics Master Action

Significant improvements were made to the Tensor Mechanics Master Action (TM-MA) to aid in user ease-
of-use input file generation. The TM-MA is a set of actions that combine the effects of several other classes
to provide a user-friendly, quick, and concise method of creating input files. These actions are created in the
“background” to reduce the length and complexity of input files. Specifically, major changes in the TM-MA
were made with the objective of creating outputs for tensor stress/strain variables.

4.1.1 Creation of New Output Quantity Classes

Prior to this improvement, mechanical stress/strain outputs were created via the process of an aux-variable
being passed through an aux-kernel for use in a post-processor. This process had several disadvantages,
foremost among which was the averaging of variables instead of getting exact values at quadrature points. In
switching to obtaining material properties, values at individual quadrature points could be utilized, greatly
increasing the accuracy. Additionally, the procedure significantly reduces the length and complexity of input
files while retaining the previous functionality. In the refinement of material outputs for the TM-MA, four
new material classes were created in MOOSE. In this section, the new classes are discussed below.
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4.1.1.1 RankTwoCartesianComponent

RankTwoCartesianComponent, as shown in Table 4.1, is a material model used to extract components of
a Rank-2 tensor within a Cartesian coordinate system. RankTwoCartesianComponent takes as arguments
the values of the indices i and j for the single tensor component that is saved in a material property.

Name Output Function
Strain Total_Strain Sum of elastic and plastic strains
Stress Stress Force applied to a material, divided by cross-sectional area
Elastic_Strain Elastic_Strain Measure of the deformations which are recoverable
Plastic_Strain Plastic_Strain Measure of the deformations which are permanent
Creep_Strain Creep_Strain Measure of the deformations which occur due to creep stress
Creep_Stress Creep_Stress Application of persistent mechanical stress

Table 4.1: Material based stresses/strains created by the RankTwoCartesianComponent class

This model can be used regardless of the coordinate system used in the simulation, as shown by Equation
4.1. The user’s selection of the indices returns only a component of a Rank-2 tensor, regardless of the
coordinate system. Therefore this operation is applicable to any coordinate system currently accepted by
MOOSE.

σi j =


σ00 σ01 σ02
σ10 σ11 σ12
σ20 σ21 σ22

 (4.1)

4.1.1.2 RankTwoCyclindricalComponent

RankTwoCyclindricalComponent is only applicable for cylindrical coordinates. For returned output
quantity values to retain a physical meaning, these calculations should include an element of rotational
symmetry. While it is possible to calculate these output quantities in any coordinate system, the traditional
choice of cylindrical coordinates (RZ in MOOSE) has been adopted as a requirement for this class. As seen
in Table 4.2, this class returns the scalar value of a Rank-2 tensor in the direction of the axis of rotation. By
default the axis of rotation is assumed to be the y-axis. Redefining the axis of rotation is possible for the user
via input of two points which define the vector on which rotational symmetry can be applied. These two
points are referred to as cylindrical_axis_point_1 and cylindrical_axis_point_2 respectively.
Following the convention of the right-hand rule, the direction of the axis starts at “point 1” and ends at “point
2”.
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Name Output Function
Stress
Strain

Axial Plastic_Strain Calculates the scalar value of a Rank-2 tensor in the direction of the axis specified by the user
Creep_Strain
Elastic_Strain
Stress
Strain

Hoop Plastic_Strain Calculates the value of a Rank-2 tensor along the hoop direction of a cylinder
Creep_Strain
Elastic_Strain

Radial Stress Calculates the scalar component for a Rank-2 tensor in the direction of the normal vector
Strain from the user defined axis of rotation

Table 4.2: Material classes created by the class RankTwoCylindricalComponent. Note: These outputs
are only valid and recognized when used with the MOOSE RZ coordinate system.

4.1.1.3 RankTwoDirectionalComponent

For an extremely customizable output quantity option, the class RankTwoDirectionalComponent allows
the determination of stresses and strains in a user specified direction. As shown Table 4.3, this class returns
a scalar value of a Rank-2 tensor in the direction specified by the user. The input file parameter direction
is a point in space that, when taken with respect to the origin, gives the direction in which the calculation
will be computed. Following standard conventions, the direction vector starts at the origin and ends at the
specified point given by the user.

Name Output Function
Directional Stress Calculates the scalar value of a Rank-2 tensor in the direction selected by the user

Strain

Table 4.3: Material classes created by the RankTwoDirectionalComponent
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4.1.1.4 RankTwoInvariant

Stresses and Strains which do not change under coordinate transformations are known as invariant quantities.
The class RankTwoInvariant involves the calculation of such invariant quantities as described in Table 4.4.

Name Output Function
VonMises Stress Calculates the von Mises measure for a Rank-2 tensor
Effective Plastic_Strain Calculates an effective scalar measure of a Rank-2 tensor

Creep_Strain
Hydrostatic Stress Calculates the hydrostatic scalar of a Rank-2 tensor

Stress
Strain

L2norm Elastic_Strain Calculates the L2 normal of a Rank-2 tensor
Plastic_Strain
Creep_Strain

Volumetric Strain Computes the volumetric strain
FirstInv Stress Calculates the first invariant of the specified Rank-2 tensor

Strain
SecondInv Stress Calculates the second invariant of the specified Rank-2 tensor

Strain
ThirdInv Stress Calculates the third invariant of the specified Rank-2 tensor

Strain
Triaxiality Stress Finds the ratio of the hydrostatic measurement to the von Mises measurement
MaxShear Stress Calculates the maximum shear stress for a Rank-2 tensor
Intensity Stress Calculates the stress intensity for a Rank-2 tensor
Max Principal Stress Calculates the largest principal value for symmetric tensor

Strain
Mid Principal Stress Calculates the second largest principal value for a symmetric tensor

Strain
Min Principal Stress Calculates the smallest principal value for a symmetric tensor

Strain

Table 4.4: Material based stresses/strains created by the RankTwoInvariant class. Note: The
effective strain measure,Effecitve, is different than effective_plastic_strain or
effective_plastic_strain calculated elsewhere in BISON. These inelastic strains are deter-
mined by calculating strain integrated over time.

These quantities depend on symmetric matrices when expressed in tensor notation. As shown in Equation
4.1.1.4, the properties of a symmetric matrix enable these calculations.

A′ =Q ·A ·QT (4.2)

where A is any symmetric tensor with Q and QT are the transformation and conjugate transpose transforma-
tion tensors respectively. In the situation where A′ = A, the transformation is invariant.
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4.2 Nuclear Materials

Additional BISON ease-of-use improvements were created through NuclearMaterials actions. These
actions help to significantly reduce the overall length of input files by creating the commonly used material
blocks in the background via the action mechanism. Additionally these actions aid new and beginning
BISON users by directly incorporating best practice settings that are routinely utilized by more experienced
BISON users and developers.
Currently there are four NuclearMaterials used within BISON, with plans for at least two more in

the near future. External BISON users have adopted the success of this formalism and created additional
NuclearMaterials which do not fall within the scope of this report. The existing Nuclear Material actions
are discussed in detail below.

4.2.1 Light Water Reactor Material Actions

LWR simulations within BISON can be broken into two simple components, fuel and cladding. The initial
versions of the NuclearMaterials actions included simplifying assumptions, which are discussed below.

4.2.1.1 UO2 Fuel

The action NuclearMaterialUO2 deals with the commonly used material blocks for LWR Uranium Oxide
fuels. The current implementation reduces input file length by creating classes internally which only deal
with elastic stress calculations. Expansion of the action capabilities to accommodate inelastic models are
planned for a future development versions. All of the material model input file blocks, generated with the
default parameter settings, are shown in Table 4.5.

Created Classes Pre-Set Parameters Block Name
ComputeIsotropicElasticityTensor poissons_ratio = 0.345 fuel_elasticity_tensor

youngs_modulus = 2.0e11
ComputeFiniteStrainElasticStress fuel_elastic_stress
ComputeThermalExpansionEigenstrain thermal_expansion_coeff =

10.0e-6
fuel_thermal_expansion

eigenstrain_name =
fuel_thermal_strain

UO2VolumetricSwellingEigenstrain burnup_function = burnup fuel_volumetric_swelling
initial_fuel_density = 10431.0
eigenstrain_name =

fuel_volumetric_strain
UO2RelocationEigenstrain burnup_function = burnup fuel_relocation

linear_heat_rate_function = q
gap = 160.0e-6
eigenstrain_name =

fuel_relocation_strain
Sifgrs gbs_model = false fuel_fission_gas_release

burnup_function = burnup
Density initial_fuel_density = 10431.0 fuel_density
ThermalFuel fuel_thermal

Table 4.5: Material model classes created by the NuclearMaterialUO2 action

4.2.1.2 Zirconium Alloy Cladding

The action ZirconiumAlloy generates the necessary material classes for common elastic LWR simulations,
specifically Zirconium alloy. This action is designed for use with only LWR simulations which use creep
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mechanics models. Simulations with plasticity are not currently accommodated by this action but will be
implemented in future development efforts. All of the material model input file blocks, generated with the
default parameter settings, are shown in Table 4.6.

Created Classes Pre-Set Parameters Block Name
ComputeIsotropicElasticityTensor poissons_ratio = 0.3 clad_elasticity_tensor

youngs_modulus = 7.5e10
ComputeMultipleInelasticStress tangent_operator = elastic clad_stress

inelastic_models = clad_zrycreep
ZryCreepLimbackHoppeUpdate absolute_tolerance = 1e-10 clad_zrycreep

max_iterations = 50
fast_neutron_flux = fast_neutron_flux
fast_neutron_fluence =

fast_neutron_fluence
ZryThermalExpansionMATPROEigenstrain burnup_function = burnup clad_thermal_expansion

eigenstrain_name =
fuel_irradiation_strain

Density density = 6551.0 clad_density
HeatConductionMaterial thermal_conductivity = 16.0 clad_thermal

specific_heat = 330.0

Table 4.6: Material classes created by the NuclearMaterialZirconiumAlloy action

4.2.1.3 Combined LWR NuclearMaterials

As seen in Examples 4.1 and 4.2, LWR simulation input file lengths are greatly reduced while maintaining
the same functionality. Future development efforts to add creep, plasticity, and inelastic material models will
further enhance the user ease-of-use in effectively and quickly creating input files. The meta-action which
creates the Tensor-Mechanics Master Action, as discussed in Section 4.3.2, is utilized in the example 4.2,
thus eliminating the need for additional lines the user needs to include within an input file.
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Example 4.1: Example of the input file length before reduction via NuclearMaterialsUO2 and
NuclearMaterialZirconiumAlloy

[Materials]
[fuel_volumetric_swelling]

type = UO2VolumetricSwellingEigenstrain
block = pellet_type_1
burnup_function = burnup
temperature = temp
eigenstrain_name = fuel_volumetric_swelling_eigenstrain
initial_fuel_density = 10233

[]
[fuel_thermal]

type = ThermalFuel
block = pellet_type_1
temp = temp
burnup_function = burnup
thermal_conductivity_model = NFIR

[]
[fuel_elastic_stress]

type = ComputeFiniteStrainElasticStress
block = pellet_type_1

[]
[fuel_thermal_expansion]

type = ComputeThermalExpansionEigenstrain
block = pellet_type_1
temperature = temp
stress_free_temperature = 300
thermal_expansion_coeff = 10e-6
eigenstrain_name = fuel_thermal_eigenstrain

[]
[fuel_elasticity_tensor]

type = UO2ElasticityTensor
block = pellet_type_1
temperature = temp

[]
[fuel_relocation]

type = UO2RelocationEigenstrain
block = pellet_type_1
burnup_function = burnup
diameter = .00819
linear_heat_rate_function = q
gap = 1.7e-4 #diameteral gap
relocation_activation1 = 5000
burnup_relocation_stop = .035
eigenstrain_name = fuel_relocation_eigenstrain

[]
[clad_thermal]

type = HeatConductionMaterial
block = 1
thermal_conductivity = 16.0
specific_heat = 330.0

[]
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[clad_creep_stress]
type = ZryCreepLimbackHoppeUpdate
block = 1
temperature = temp
fast_neutron_flux = fast_neutron_flux
fast_neutron_fluence = fast_neutron_fluence

[]
[clad_inelastic_stress]

type = ComputeMultipleInelasticStress
block = 1
tangent_operator = elastic
inelastic_models =’clad_creep_stress ’

[]
[clad_elasticity_tensor]

type = ZryElasticityTensor
block = 1

[]
[clad_irradiation_growth]

type = ZryIrradiationGrowthEigenstrain
block = 1
fast_neutron_fluence = fast_neutron_fluence
eigenstrain_name = clad_irradiation_growth_eigenstrain

[]
[clad_thermal_expansion]

type = ZryThermalExpansionMATPROEigenstrain
block = 1
stress_free_temperature = 300
temperature = temp
eigenstrain_name = ’clad_thermal_eigenstrain ’

[]
[fission_gas_release]

type = Sifgrs
diff_coeff_option = 2
transient_option = 2
block = pellet_type_1
temp = temp
burnup_function = burnup
grain_radius = grain_radius
gbs_model = true

[]
[clad_density]

type = Density
block = clad
density = 6551.0

[]
[fuel_density]

type = Density
block = pellet_type_1

[]
[]

33



Example 4.2: Example of the input file length reduction achievedwith the use of the NuclearMaterialsUO2
and NuclearMaterialZirconiumAlloy actions

[NuclearMaterials]
[UO2]

[fuel]
block = pellet_type_1
stress_free_temperature = 300
diameter = 0.00819
gap = 1.7e-4
burnup_relocation_stop = 0.035
thermal_model = NFIR
grain_radius = grain_radius
gbs_model = true
initial_fuel_density = 10233
burnup_function = burnup
diff_coeff_option = 2
transient_option = 2
generate_output = ’hydrostatic_stress stress_xx stress_yy stress_zz

vonmises_stress ’
[]

[]
[ZirconiumAlloy]

[clad]
block = 1
stress_free_temperature = 300
generate_output = ’stress_xx stress_yy stress_zz vonmises_stress

creep_strain_xx
creep_strain_yy creep_strain_xy ’

[]
[]

[]
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4.2.2 Metallic Fuel

4.2.2.1 UPuZr Fuel

The action NuclearMaterialUPuZr deals with the commonly used material blocks for metallic fuels when
these actions are utilized in the input file. All of the material blocks, generated with the default parameter
settings, are shown in Table 4.7.

Created Classes Pre-Set Parameters Block Name
UPuZrFissionRate fission_rate
UPuZrBurnup burnup_name = burnup burnup
UPuZrElasticityTensor fuel_elasticity_tensor
ComputeMultipleInelasticStress fuel_inelastic_stress
UPuZrCreepUpdate max_inelastic_increment = 1e-2 fuel_upuzrcreep
ComputeThermalExpansionEigenstrain thermal_expansion_coeff = 1.18e-5 fuel_thermal_expansion

eigenstrain_name = fuel_thermal_strain
UPuZrGaseousEigenstrain bubble_number_density = N_bubbles gas_swelling

interconnection_initiating_porosity = 0.23
interconnection_terminating_porosity = 0.25
bubble_number_density = N_bubbles

BurnupDependentEigenstrain eigenstrain_name = solid_swelling_strain solid_swelling
ThermalUPuZr metal_fuel_thermal
Density initial_fuel_density = 15800 fuel_density
FgrUPuZr fission_rate = fission_rate fission_gas_release

critical_porosity = 0.24
fractional_fgr_initial = 0.8
fractional_fgr_post = 1.0

Table 4.7: Material classes created by the NuclearMaterialUPuZr action

4.2.2.2 HT9 Cladding

The action NuclearMaterialHT9 deals with the commonly used material blocks for high-Cr martensitic
steel (HT9) metallic fuel cladding. All of the material blocks, generated with the default parameter settings,
are shown in Table 4.8.

Created Classes Pre-Set Parameters Block Name
ComputeIsotropicElasticityTensor poissons_ratio = 0.236 clad_elasticity_tensor

youngs_modulus = 1.88e11
ComputeMultipleInelasticStress tangent_operator = nonlinear clad_stress

inelastic_models = clad_ht9creep
FastNeutronFlux factor = 1.0 fast_flux
HT9CreepUpdate clad_ht9creep
ComputeThermalExpansionEigenstrain thermal_expansion_coeff = 1.2e-5 clad_thermal_expansion

eigenstrain_name = clad_thermal_strain
ThermalHT9 clad_thermal
Density density = 7874.0 clad_density

Table 4.8: Material classes created by the NuclearMaterialHT9 action

4.2.2.3 Combined Metallic Fuel NuclearMaterials

As seen in Examples 4.3 and 4.4, metallic fuel simulation input file lengths are greatly reduced. The meta-
action utilized in the combined input reductions outlined in Example 4.2, and discussed in 4.3.2, is not used
in the Example 4.4.
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Example 4.3: Example of the input file before reduction via NuclearMaterialsUPuZr and
NuclearMaterialHT9

[Materials]
[./fission_rate]

type = UPuZrFissionRate
rod_linear_power = power_history
axial_power_profile = axial_peaking_factors
pellet_radius = 2.195e-03
X_Zr = 0.225
X_Pu_function = 0.163
block = pellet

[../]
[./burnup]

type = UPuZrBurnup
initial_X_Pu = 0.163
density = 15800
block = pellet

[../]
[./fuel_elasticity_tensor]

type = UPuZrElasticityTensor
X_Zr = 0.225
X_Pu = 0.163
block = pellet

[../]
[./fuel_inlastic_stress]

type = ComputeMultipleInelasticStress
inelastic_models = ’fuel_upuzrcreep ’
block = pellet

[../]
[./fuel_upuzrcreep]

type = UPuZrCreepUpdate
block = pellet
max_inelastic_increment = 1e-2

[../]
[./fuel_thermal_expansion]

type = ComputeThermalExpansionEigenstrain
block = pellet
thermal_expansion_coeff = 1.18e-5
stress_free_temperature = 295.0
eigenstrain_name = fuel_thermal_strain

[../]
[./gas_swelling]

type = UPuZrGaseousEigenstrain
eigenstrain_name = gas_swelling_eigenstrain
bubble_number_density = 5e17
interconnection_initiating_porosity = 0.29
interconnection_terminating_porosity = 0.31
output_properties = ’porosity gaseous_porosity ’
block = pellet

[../]
[./solid_swelling]

type = BurnupDependentEigenstrain
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eigenstrain_name = solid_swelling_eigenstrain
block = pellet
swelling_name = ’solid_swelling ’

[../]
[./metal_fuel_thermal]

type = ThermalUPuZr
block = pellet
X_Zr = 0.225
X_Pu = 0.163
spheat_model = savage
thcond_model = lanl

[../]
[./fuel_density]

type = Density
block = pellet

[../]
[./Fission_Gas_Release]

type = FgrUPuZr
block = pellet
critical_porosity = 0.30
fractional_fgr_initial = 0.4
fractional_fgr_post = 0.8

[../]
[./clad_elasticity_tensor]

type = ComputeIsotropicElasticityTensor
youngs_modulus = 1.88e11
poissons_ratio = 0.236
block = clad

[../]
[./clad_stress]

type = ComputeMultipleInelasticStress
inelastic_models = ’clad_ht9creep ’
block = clad

[../]
[./fast_flux]

type = FastNeutronFlux
block = clad
factor = 2.47e19

[../]
[./clad_ht9creep]

type = HT9CreepUpdate
block = clad

[../]
[./thermal_expansion]

type = ComputeThermalExpansionEigenstrain
block = clad
thermal_expansion_coeff = 1.2e-5
stress_free_temperature = 295.0
eigenstrain_name = clad_thermal_strain

[../]
[./clad_thermal]

type = ThermalHT9
block = clad

[../]
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[./clad_density]
type = Density
block = clad
density = 7874.0

[../]
[]
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Example 4.4: Example of the input file length reduction via NuclearMaterialsUPuZr and
NuclearMaterialHT9

[NuclearMaterials]
[./UPuZr]

[./fuel]
block = pellet
rod_linear_power = power_history
axial_power_profile = axial_peaking_factors
pellet_radius = 2.195e-03
stress_free_temperature = 295.0
bubble_number_density = 5e17
interconnection_initiating_porosity = 0.29
interconnection_terminating_porosity = 0.31
X_Zr = 0.225
X_Pu = 0.163
initial_X_Pu = 0.225
initial_X_Zr = 0.163
spheat_model = savage
thcond_model = lanl
critical_porosity = 0.30
fractional_fgr_initial = 0.4
fractional_fgr_post = 0.8

[../]
[../]
[./HT9]

[./clad]
block = clad
factor = 2.47e19
stress_free_temperature = 295.0

[../]
[../]

[]
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4.3 Additional Refinements Within NuclearMaterials

4.3.1 Stress Free Temperature

In updating the Nuclear material classes, several classes need to be altered so that they inherited from
ComputeThermalExpansionEigenstrainBase. Prior to this update, these classes calculated the stress
free temperature as an average. With the change stress free temperature became a material property and
could be calculated at individual quadrature points. In addition, some material classes which were still
performing Fortran class were updated to modern C++ implementations.

4.3.2 Tensor Mechanics Master Action Creation via NuclearMaterials

A common feature integrated into all Nuclear Materials is the ability to create the
TensorMechanicsMasterAction. This feature is only activated in a Nuclear Material block if the user
specifies the “generate_output” parameter. When TM-MA is constructed within the NuclearMaterials, in
addition to the stress/strain outputs listed in the “generate_output,” the eigenstrain names are created and used
by their respective material blocks. This behind the scenes designation allows for a seamless implementation
of the tensor mechanics eigenstrain without any naming errors.

4.3.3 Thermal Components

A final NuclearMaterials refinement is the ability to create the thermal kernels and temperature variable
in the background. This class is a standalone feature within NuclearMaterials in that it doesn’t require
a specific block. The “fuel_block” is requested since the class NeutronHeatSource is only applied to
fuel components. Future refinements will allow this to be created within the respective fuel blocks within
NuclearMaterials. Further clarification on the classes and default settings are shown in Table 4.9.

Created Classes Pre-Set Parameters Name
MooseVariable family = LAGRANGE temperature

control_tags = Variables
ConstantIC variable = temperature initial_temperature
HeatConduction variable = temperature heat

extra_vector_tags = ref
HeatConductionTimeDerivative variable = temperature heat_ie

extra_vector_tags = ref
NeutronHeatSource variable = temperature heat_source

extra_vector_tags = ref

Table 4.9: Material classes created by the NuclearMaterialThermal action
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4.4 Standard LWR Fuel Rod Output Action

Building on the work started in the previous year [1], the Standard Outputs Action was expanded
during this physical year to reflect best practices for analyzing results and to expand the usage op-
tions. As with the NuclearMaterials actions and TensorMechanics action described above, the
StandardLWRFuelRodOutputs action is intended to simplify a BISON input file by reducing the number
of input file lines devoted to output quantity creation. This action creates up to 13 scalar and vector post-
processor quantities, and the user may elect to generate output quantities associated with only the fuel pellets,
only the cladding, or, in the default case, both the fuel and cladding rod components. Equally importantly,
the StandardLWRFuelRodOutputs action helps to enforce best practices in fuel rod performance analyses
by ensuring the creation of the set of output quantities deemed commonly required for these analyses. As
the name suggests, this action is intended only for use with LWR simulations. Development efforts in other
project focus areas, however, have involved the creation of a standard outputs action specific to metallic fuel
applications.

4.4.1 Rod Average Burnup Calculation

Due to the period over which LWR assessment cases have been added to the BISON assessment repository,
significant variations in the method used to calculate the rod average burnup can be found. Many of the
BISON LWR assessments simulations relied on an element averaging post-processors while others queried
the burnup function directly. A third group of simulations neglected to include the average burnup as an
output quantity. Despite these shortcomings, the average burnup of the fuel rod is a useful quantity in
comparing BISON simulation results to experimental data. Rod average burnup is also used to compare
the results of different BISON fuel rod simulations. In order to ensure consistent comparisons, a common
method of calculating the fuel rod average burnup quantity for BISON simulations is necessary.
The specifically designed RodAverageBurnup post-processor was selected as the most appropriate output
quantity, and was added to the existing StandardLWRFuelRodOutput action to ensure consistent, best-
practices usage throughout the BISON LWR assessment repository. Since this quantity is directly associated
with the fuel, this quantity is only created if the user elects to generate fuel pellet associated output quantities
with the StandardLWRFuelRodOutput action.
The RodAverageBurnup post-processor directly queries the BurnupFunction input file block and thus
ensures consistent calculation of the average rod burnup value, regardless of the simulation mesh order and
the input file Burnup block settings. The other prevalent method of calculating the average burnup, the
ElementAverage post-processor, was sensitive to the order and family settings in the Burnup input file
block. This sensitivity could have resulted in different calculated output values of the rod average burnup for
the same BurnupFunction settings. The expansion of the StandardLWRFuelRodOutput action to use the
RodAverageBurnup post-processor eliminates these concerns.

4.4.2 Expanded Plenum Temperature Calculation Options

A second development focus area within the expansion of the StandardLWRFuelRodOutput action is the
plenum temperature value calculation and output generation. The plenum temperature value is used to
calculate the quantity of fission gas released throughout the BISON simulation; therefore, this value plays a
crucial role in the proper simulation of the fuel rod performance behavior.
Similar to the rod average burnup calculation, multiple methods for calculating the plenum temperature
were used within the BISON LWR assessment repository. The development efforts here focused on ex-
panding the StandardLWRFuelRodOutput action to allow for the calculation of the plenum temperature
with one of two different post-processor types, replacing the previous simple post-processor option used
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with the StandardLWRFuelRodOutput action. An additional benefit of this development work was the
standardization of the code and terminology associated with the plenum temperature calculation methods.
Many of the BISON LWR assessment cases use the SideAverageValue post-processor, which computes
a simple average of all the interior cladding and and exterior pellet surfaces exposed to the plenum. This
method can lead to an overestimation of the plenum temperature because the cladding surfaces which are
above the fuel pellet stack more strongly influence the temperature of the plenum gases by nature of being
exposed to more of these gases.
The PlenumTemperature action was developed to correct the potential overestimation by introducing
weighting factors to the plenum temperature calculation. These weighting factors are proportional to the
amount of plenum gas volume each surface touches: the cladding surfaces above the fuel pellet stack will
be in direct contact with more of the plenum gas volume than will the lower cladding surfaces and external
pellet surfaces in the fuel stack.
To enable the user to calculate and generate the plenum temperature value with either of these two options,
the StandardLWRFuelRodOutput action was expanded to include so-called meta action capabilities. These
additional capabilities enable the standard outputs action to generate the secondary PlenumTemperature
action. A new input file enumeration option was added to require the user to select between these different
methods of calculating the plenum temperature value.

4.4.2.1 Improved Nomenclature Consistency

The expansion of the StandardLWRFuelRodOutput action into a meta action uncovered inconsistencies in
the nomenclature used to calculate the plenum temperature value with the two post-processor approaches
describe above. Due to the weighting factors employed in the PlenumTemperature action approach, varia-
tions in the surface designations as ’inner’ and ’outer’ produced significantly different plenum temperature
values in even a simplified regression test simulation. The significant variation in the calculated temperature
value is the result of a mesh node search algorithm in the code: if the search does not return an opposing
node within a gap region, the first surface is assumed to be above the pellet stack and is assigned a higher
weighting factor. Incorrect settings of the surface designations will result in incorrect applications of the
weighting factor.
As a result of this work, updates were made to both the in-code documentation strings, the user-facing web-
based documentation, and the regression tests. All three of these updates will improve the user experience
by clarifying the best practices use of the PlenumTemperature action, both with and without the standard
LWR outputs action. Assessments are ongoing to determine if code updates to calculation of the plenum
temperature in the case of discrete pellet meshes are compatible with the BISON validation base.

4.4.2.2 Extension of the Standard Outputs Action to Discrete Meshes

Originally designed for only smeared pellet meshes, the StandardLWRFuelRodOutput action was ex-
panded to discrete pellet meshes in this FY. In discrete pellet meshes, pellet top and bottom surfaces, in
addition to previously utilized pellet exterior and cladding interior surfaces, influence the calculation of
the plenum temperature values. Through the extension of the standard LWR outputs action to include
the PlenumTemperature action, the ability to handle discrete pellet meshes is also being added to the
StandardLWRFuelRodOutput action, widening the range of LWR fuel performance simulations that can
utilize this action.
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4.5 Action Syntax Expansion

The introduction of additional MOOSE/BISON actions enable users to choose a more concise input file
syntax. The action system was designed to cover common use cases for BISON, as described in the previous
sections. The simplicity does, however, come with the cost of a reduced flexibility. To prevent the simplified
action syntax from being a dead end for users who need to set up complex models which go beyond the scope
of the action system, a method was needed to convert the action syntax to the low levelMOOSE object input
syntax.
Actions within the MOOSE framework and its derived applications are a programmatic way of setting up
objects from any of the many MOOSE systems. These can include elements such as Variables, Kernels,
Materials, and Boundary Conditions, to name just a few. By design the action system is opaque to the end
user. Which objects are created through each action can only be determined through the documentation or
by investigating the source code. Knowing exactly what parameters are passed to the created objects is even
more difficult, as the parameters passed to the low level MOOSE objects can be a complex function of the
parameters passed into the simplified action syntax.
The goal of this development effort was to remove some of the opacity of the MOOSE action sys-
tem and to provide an automated way to expand the simplified action syntax into the verbose low level
MOOSE object syntax. The basis of this desired capability comes from a custom MOOSE problem class,
DumpObjectsProblem, that intercepts the creation of each object performed by a selected action. Object
type and parameter set as created by the action are recorded and serialized into the MOOSE input file format.
In order to make this functionality more accessible a plugin[2] for the Atom text editor[3] was developed.
The action-explode-moose defines a hotkey that transforms the action block under the cursor into the
verbose low level MOOSE object syntax. The expanded syntax should result in a simulation behavior that
is indistinguishable from the original input using the action syntax. Once expanded, the verbose input file
offers all the flexibility and customization of the underlying MOOSE objects. Any object in the expanded
syntax can be replaced with a customized version and parameters can be tweaked that are not available in
the simplified syntax.
The action expansion was achieved by parsing the input file into a tree structure from which we extract the
input file block path (e.g. Modules/TensorMechanics/Master/all) and the character range the identified
block occupies in the input text. A valid MOOSE executable was detected in the current path (or above)
from which MOOSE is launched with command line options to activate the DumpObjectsProblem and
supply the input file block path of the action to be expanded. The MOOSE executable will return the verbose
input text which is then inserted at top level near the original simplified action, which is removed from the
input text. An example of an input file snippet before and after the action expansion is shown in 4.5 and 4.6
respectively.

Example 4.5: Example of an input file excerpt with the simplified action syntax before expanding the Mod-
ules/TensorMechanics/Master/block2 action subblock.

[Modules/TensorMechanics/Master]
[./block1]

strain = FINITE
add_variables = true
#block = 1

[../]
[./block2]

strain = SMALL
add_variables = true
block = 2

[../]
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[]

Example 4.6: Example of an input file excerpt after expanding one of the
Modules/TensorMechanics/Master subblocks.

[Modules/TensorMechanics/Master]
[./block1]

strain = FINITE
add_variables = true
block = 1

[../]
[]

[Kernels]
[./TM_block20]

type = StressDivergenceTensors
block = 2
component = 0
displacements = ’disp_x disp_y’
variable = disp_x

[../]
[./TM_block21]

type = StressDivergenceTensors
block = 2
component = 1
displacements = ’disp_x disp_y’
variable = disp_y

[../]
[]

[Materials]
[./block2_strain]

type = ComputeSmallStrain
block = 2
displacements = ’disp_x disp_y’

[../]
[]

[Variables]
[./disp_x]

type = MooseVariable
[../]
[./disp_y]

type = MooseVariable
[../]

[]
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4.6 Summary and Future Work

The majority of the efforts for FY20 were focused on improvements to the BISON ease-of-use. These
improvements included a significant effort to simplify input file creation for users through action blocks.
These action blocks maintain full functionality of the BISON code while greatly reducing the complexity
and length of input files created by users. As a result of these BISON input file creation refinements, code
was refined to allow for more accurate calculations of items such as stresses, strains, burnup and plenum
temperature. These improvements help to reduce some of the barriers to BISON use for both new and
existing users.
Additionally, work utilizing the editor Atom allowed input file creation to become more transparent with
respect to the parameters which users have control over. When combined with the newly implemented
action blocks, user creation of BISON input files was simplified and improved.
Future developments and improvements for BISON’s ease-of-use will continue to focus on ensuring the
input files represent the current capabilities of BISON and on assisting end users with harnessing these
capabilities. To achieve these goals we have identified the following tasks for future work:

1. Continued improvement of existing and new mechanics quantity output input file helper action
capabilities

2. Expansion of common nuclear material model sets into and within predefined action blocks

3. Refinement of existing and new fuel rod specific output capabilities

4. Further utilization and simplification of action input file blocks within the editor Atom.

All of these future development goals will build on the work completed under this milestone to update,
expand, and improve the BISON ease-of-use.
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5 Frictional contact with multiple inelastic materials

5.1 Background

During the development of a new LWR Validation case for the IFA-629.4 high burnup fuel case it was
found that thermomechanical frictional contact in combination with smeared cracking inelastic materials
led to small timesteps and convergence issues [1]. In this work we attempt to address these issues using
Automatic Differentiation (AD) to improve Jacobian calculations for the fuel material models. This work
includes converting all of the smeared cracking models over to AD as well as the UO2 relocation eigenstrain
model. We then use the new AD models to perform a comparison of an AD versus non-AD simulation
of the IFA-629.4 high-burnup fuel case. The main accomplishment of this work is to begin using AD to
run a complex nuclear fuel problem in BISON. The full benefits of AD cannot be realized in this work
until the entire simulation is fully AD, which would require the conversion of the following models to AD:
thermomechanical frictional contact, fission gas release, fuel burnup, and cladding material.

5.2 Class Conversion to Automatic Differentiation

Traditionally, the physical model’s Jacobian or its required approximation for preconditioning have been
obtained by manually computing on- and off-diagonal Jacobian entries. This can often result in an adequate
Jacobian approximation but it forces the developer to employ significant effort in making sure the often
cumbersome Jacobian expressions are correct. In addition, obtaining an accurate system Jacobian by means
of analytical expressions can be very challenging for non-smooth physics (e.g., frictional contact andmaterial
models with abrupt stiffness changes).

5.2.1 Automatic Differentiation Classes

In MOOSE, automatic differentiation, or AD, classes compute the Jacobian of the system automatically by
taking advantage of the MetaPhysicL library features. By defining scalars and tensors with the correct AD
C++ type, the Jacobian is computed numerically without developer intervention. The advent of automatic
differentiation in theMOOSE ecosystem has caused some same-purpose classes to have duplicated documen-
tation, header, and source files. This causes undesirable code duplication. AD and non-AD classes that are
used by the analyst for the same purpose can easily get out of sync and, additionally, will require duplicated
maintenance. For these reasons, we have recently started to give preference to templated AD-non-AD classes
which, avoiding code duplication, resolve to the right types by instantiating a template parameter is_ad to
true, if automatic differentiation is used, and false, if the traditional hand-coded version is used. In this case,
and to have a quicker development turnaround, we first converted a hierarchy to separate AD classes.

5.2.2 MOOSE Changes

A typical parent class for materials in MOOSE isMaterial. This class has an AD counterpart named ADMa-
terial. Starting from ADMaterial, we created a new hierarchy of automatic differentiation-enabled classes,
which are depicted in Fig. 5.1. Parent class ADSmearedCrackSofteningBase and child classes ADAbrupt-
Softening, ADExponentialSoftening, and ADPowerLawSoftening inherit from ADMaterial and compute the
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Figure 5.1: Doxygen documentation depicting hierarchy of ADPowerLawSoftening

cracking release stress that is used by ADComputeSmearedCrackingStress to calculate the finite-strain-based
stress tensor for a smeared cracking material. Instead of the non-AD types Real, RealVectorValue, RankT-
woTensor, and RankFourTensor, the converted classes use ADReal, ADRealVectorValue, ADRankTwoTensor,
and ADRankFourTensor, which incorporate Jacobian information. Failure to choose the right type for a con-
tributor to the residual results in Jacobian information loss (i.e., inaccuracies in the computation of on- and
off-diagonal terms).
Partial details of C++ inheritance are given in the excerpt below.

/**
* ADSmearedCrackSofteningBase is the base class for a set of models that define the
* softening behavior of a crack under loading in a given direction.
* These models are called by ADComputeSmearedCrackingStress, so they
* must have the compute=false flag set in the parameter list.
*/
class ADSmearedCrackSofteningBase : public ADMaterial
{
}

/**
* ADAbruptSoftening is a smeared crack softening model that abruptly
* drops the stress upon crack initiation and relies on automatic
* differentiation. It is for use with ADComputeSmearedCrackingStress.
*/
class ADAbruptSoftening : public ADSmearedCrackSofteningBase
{
}

/**
* ADExponentialSoftening is a smeared crack softening model that
* uses an exponential softening curve. It is for use with
* ADComputeSmearedCrackingStress and relies on automatic
* differentiation.
*/
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class ADExponentialSoftening : public ADSmearedCrackSofteningBase
{
}

/**
* ADPowerLawSoftening is a smeared crack softening model that
* uses a power law equation to soften the tensile response.
* It is for use with ADComputeSmearedCrackingStress and uses
* automatic differentiation.
*/
class ADPowerLawSoftening : public ADSmearedCrackSofteningBase
{
}

/**
* ADComputeSmearedCrackingStress computes the stress for a finite strain
* material with smeared cracking
*/
class ADComputeSmearedCrackingStress : public ADComputeMultipleInelasticStress
{
}

For all the cases tested, the use of automatic differentiation produces a Jacobian of the same quality or better
than its hand-coded counterpart.

5.3 BISON Computational Model

A brief summary of the finite-element model and base irradiation power history from [1] will be given here.
The simulation model consists of a 2D axisymmetric finite element mesh containing dished fuel pellets
initially separated from the cladding. Only the base irradiation is studied in this work approximated by
constant power operation at 20, 25, 24, 21, and 17 kW/m for cycles of length 6088, 7327, 6237, 6383,
and 6176 hours. The fuel material model includes creep and smeared cracking while the cladding material
only includes creep. The thermal contact model captures conductance through the gap as well as increased
conductance as a function of contact pressure. Mechanical frictional contact between fuel and cladding is
modeled with kinematic constraints normal to the contact surface and penalty contact for sliding tangential
to the contact surface.
Only the fuel models are converted to AD. Initially, only the tensor mechanics smeared cracking material
model and its associated softening models were going to be converted to AD. However, AD and non-AD
variables such as stress and eigenstrain cannot be easily shared between tightly-coupled material models.
This required fuel materials associated with eigenstrains, such as relocation and volumetric swelling, to
also be converted to AD. Material converters were used to convert regular material properties produced by
non-AD material models, such as the SIFGRS fission gas release model, to AD material properties required
by the AD versions of the relocation and volumetric swelling models. With these changes, we were able to
run simulations using AD material models for the fuel.
In order to evaluate AD, four different simulations were set up. Two different material models for the fuel
were used for the simulations, the original model and a simplified elastic model. An AD version of the
original model was also created and tested with two different nonlinear solver typed, Preconditioned Jacobian
Free Newton Krylov (PJFNK) and Newton. The original model is described in [1] and contains smeared
cracking with exponential softening. A simplified model was also created that includes only elastic materials
and frictionless contact. Results are also given for two AD versions of the original fuel model that use
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different nonlinear solvers. The first version uses a Jacobian Free Newton Krylov Precondtioner (PJFNK)
which only requires an approximate Jacobian as a preconditioner. The second version uses a full Newton
method to solve the nonlinear system which assumes the Jacobian supplied by the material models is correct.
There are pros and cons to both methods’ nonlinear solution methods. For a fully AD version of the entire
model, the Newton solver will provide the fastest solve time by using an exact Jacobian to the linear solves.
For a partially converted simulation with only some models being AD, PJNFK will provide a more robust
solution method because Jacobian is assumed to only be approximate. However, the PJNFK should benefit
from a few of the material models producing exact Jacobians.

5.3.1 Results and Comparisons

The timing results are shown in Figure 5.2 where the top plot gives the simulation wall time for timing
and 5.3 for iteration count per step. The light gray lines mark the power ramps for each of the four power
cycles of the base irradiation. The original model from [1] is shown by the orange line and labeled Original.
As expected, the simplified model shown by the blue line and labeled Simplified solves the base irradiation
faster than the original model and with fewer nonlinear iterations. The AD versions of the original model
do no perform as well and fail due to convergence issues before the base irradiation is complete. The AD
fuel model using PJFNK shown by the green line and labeled AD PJFNK makes it to the fourth power
cycle before running into convergence issues and failing due to the timestep falling below 1 second. Each
of the power cycles lead to a large drop in the timestep for all of the simulations but the AD PJFNK takes
several more time steps to recover from these. At about 400 days, the iteration count for the AD PJFNK
simulation increases to around 8 nonlinear solves per timestep and never drops back down. This could be
due to Jacobian inaccuracies caused by one of the non-AD fuel models — such as fission gas release or
burnup — and needs to be investigated further. The AD fuel model using Newton shown by the red line and
labeled AD Newton makes it slightly past the first power cycle before its timestep drops below one second.
The nonlinear iteration count for the AD Newton simulation remains high from the start of the simulation.
However, the AD Newton only requires a single linear solve per nonlinear iteration because the system size
is small enough to use a direct linear solver.
As more models and functions are converted over to AD, it is expected that AD will provide a more robust
solution strategy compared to its non-AD counterparts. This, in effect, should increase the timestep limits
and reduce the overall solve time. AD should also provide a more robust solution strategy allowing us to run
simulations that are currently not possible to run.

5.4 Creep/Plasticity Model Systems

To further investigate the effect of converting models over to automatic differentiation we set up two small
model systems. The first one (Figure 5.4) consists of a single material block that is being compressed by
prescribing a sinusoidal displacement curve with linearly increasing amplitude to its right surface.
The second system (Figure 5.5) consists of a two-block setup, with a smaller block repeatedly impacting
a larger block with the aforementioned prescribed sinosoidal displacement. This second setup repeatedly
goes in and out of contact with increasing forces exhibited by the two blocks. The advantages of small
model systems are the rapid turnaround between successive simulations with different parameters and model
implementations as well as the reduction to the smallest set of model components.

5.4.1 Results and Comparisons

We set up bothmodels with either a set of conventionalmodel classeswith hand-coded approximate Jacobians
and a set of fully AD-enabledmodel classes with perfect Jacobians. The single blockmodel system converges
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Figure 5.2: Simulation time in days versus (top) total compute time and (bottom) time-step size. The light
gray lines mark the power ramps for each of the four power cycles of the base irradiation.
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Figure 5.3: Simulation time in days versus (top) total linear iterations per step and (bottom) number of
nonlinear iterations per step. The light gray lines mark the power ramps for each of the four
power cycles of the base irradiation.

Figure 5.4: Final state of the single-block model system after four compression cycles.

Figure 5.5: Visualization of the creep (left) and plastic (right) strains of the impacting block in our model
system, during the fourth impact cycle.
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with both the AD as well as the non-AD models. The most striking observation in Figure 5.6 is how much
better the AD version (blue curve) of the model performs compared to the non-AD version (red curve).
Despite the added overhead of the dual number computation, the AD calculation surpasses the non-AD
calculation as soon as the deformation gets sufficiently large. Notably the AD convergence behavior is much
more consistent and does not show jumps in wall time due to difficult to converge steps. We also analyzed
the non-AD model behavior when only one of the inelastic models is enabled, either creep or plasticity.
We observe that the computational cost of the combined model is substantially larger than the sum of the
individual inelastic models (green curves).

Figure 5.6: Wall time vs. simulation time in the single-block model system, showing a substantial perfor-
mance advantage of the AD implementation over the non-AD implementation of the mechanics
models.

The two-block impact configurationwith contact only convergeswhen using theADversions of themechanics
models. Neither with the penalty nor the mortar contact formulation the non-AD version of the model
converges beyond the first time the two blocks come into contact.
For all AD model systems, we were able to successfully solve using the Newton method, which realizes the
performance gains provided by the perfect AD Jacobian. All non-AD models only ran as far as they did
using PJFNK.
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Figure 5.7: Wall time vs. simulation time in the repeated impact creep/plasticity model system. Times the
two blocks are in contact are shaded light red. The fully AD-converted system shows good
convergence properties, whereas the conventional models fail as soon as contact is established
for the first time.
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5.5 Conclusions

Converting models to use automatic differentiation improves convergence and overall computation speed in
simulations with large deformation. Simulations with multiple inelastic models in particular benefit from
the perfect Jacobian provided by AD. Going forward we will use the templated is_ad approach to combine
the codebases of the non-AD and AD implementations of our models removing potential code duplication
and reducing the maintenance overhead for MOOSE/BISON.
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6 BISON Windows Executables

To lower the barrier for novice BISON users who are running the Microsoft Windows operating system,
we investigated the possibility of providing a native Windows binary distribution of the BISON code. The
underlying MOOSE framework is officially only supported on macOS and Linux operating systems (OSs).
Both of those OSs follow the so-called Posix standard and offer a set of largely compatible APIs as well as
easily available toolchains for compiling and linking the C++source code files. In particular the availability
of the GNU Compiler Collection or the compatible LLVM based Clang compiler as well as GNU make as
the build tool are key features of these OSs.

6.1 Native Windows Executables

Several compatibility layers centered around the Minimalist GNU for Windows (MinGW) project exist
on Windows to provide a build environment that should be largely compatible with a genuine Posix OS.
We chose the MSYS2 project [1], which is up to date, well maintained, and features the pacman package
manager for easy installation and updates. TheMSYS2 repositories provide several patched and precompiled
dependencies of MOOSE and libmesh that greatly simplify the effort of porting to Windows.
While some successes had been reported in the past for compiling PETSc and libMesh on Windows, we
found the process to be less than straightforward. Building PETSc required a custom configuration, which
has now been added to the MOOSE repository. A file path-mangling issue needed to be resolved by patching
build configuration files using a Python script, also checked in to the MOOSE repository. Among the several
patches submitted to libMesh and MOOSE were:

• Use of Windows APIs for several filesystem functions, such as file deletion, path resolution, and file
meta data retrieval. These calls were wrapped in MOOSE utility functions, minimizing the amount of
platform-specific code.

• Detect and work around unimplemented features, such as just-in-time compilation for parsed functions

• Tweaks to the build system to ensure correct directory path formats

We have thoroughly documented the required setup steps for MSYS2 and the build process for PETSc,
libmesh, and MOOSE on the mooseframework.org website at https://mooseframework.org/getting_
started/installation/msys2.html.
We have been able to produce native Windows MOOSE executable that pass a large fraction of the MOOSE
test suite and can be executed from a vanilla Windows command prompt. Further work will be needed
to automate the remaining manual steps required to produce a linked executable. Issues remain linking
MOOSE-derived applications

6.1.1 Regular expression library

In an effort to improve portability of the MOOSE code base, we have worked on replacing the external pcre
(Perl Compiled Regular Expressions) library with built-in C++11 regular epressions.
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Figure 6.1: An initial build of a native Windows MOOSE executable is shown to pass a large number of
integration tests.

6.1.2 Windows Subsystem for Linux

During the work on the BISON onWindowsmilestone, Microsoft unveiled the next generation of itsWindows
Subsystem for Linux (WSL) 2. WSL is a compatibility layer forWindows that allows the installation of Linux
distribution packages, providing a full-featured Linux terminal. The initial version WSL1 allowed to install
prerequisites to build and execute PETSc, libMesh, and MOOSE. However, it exhibited severely degraded
filesystem performance, making the installation and build process unwieldy and slow. Furthermore, working
with files inside the WSL system required the use of Linux tools, such as editors and visualization software,
rather than familiar Windows tools.
WSL2 promised better performance and we investigated building MOOSE and MOOSE-based applications
on this improved system. Besides having to build the MPI mpich2 from scratch, we were able to follow the
Linux build instructions very closely and ended up with fully featured MOOSE app executables.
To improve the user experience, the MOOSE integration for autocompletion[2] in the Atom editor[3] was
improved to work on Windows allowing the native Windows version of Atom to be used to edit files inside
the WSL2 container. WSL2 files are made available in Windows through a virtual network share located
at \\wsl$\distribution\path. The moose-autocomplete plugin for Atom obtains a description of valid
application syntax by running a MOOSE app using the �json commandline switch. This causes the app
to output JSON data describing all valid parameters for all available objects for the given app — rather
than statically supplying a syntax description which would quickly go out of date as soon as objects in a
MOOSE-based application are added or modified.
The MOOSE-autocomplete plugin detects whenever a file is located within a WSL2 container and uses the
Windows wsl command to discover and execute a MOOSE app executable within the WSL2 container. The
entire process is seamless to the user. Figure 6.2 shows a screenshot of a native Atom editor being used to
edit a MOOSE inputfile within a WSL2 container with working autocompletion. We believe WSL2 to be a
suitable avenue for making MOOSE available on Windows systems as it very closely maps to our current
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Figure 6.2: MOOSE input file editing with autocompletion on Windows. A native Atom editor with the
moose-autocomplete plugin is used to edit an inputfile within a WSL2 container. A MOOSE app
compiled within the same WSL2 container is queried to obtain the valid application syntax.

Linux based testing and development infrastructure.

59



Bibliography

[1] Alexey Pavlov and Ray Donnelly. MSYS2 - Software Distribution and Building Platform for Windows.
https://www.msys2.org/, 2020.

[2] Daniel Schwen. autocomplete-moose. https://github.com/dschwen/autocomplete-moose/,
2020.

[3] GitHub.com. Atom - A hackable text editor for the 21st Century. https://atom.io, 2020.

60

https://www.msys2.org/
https://github.com/dschwen/autocomplete-moose/
https://atom.io


7 BISON User Support, Documentation
Improvement, and Quality Assurance

7.1 User Support

7.1.1 Incorporating End-User Feedback

To aid in incorporating feedback, an ease-of-use survey was created to gauge the users’ familiarity and desires
with BISON. The questions were developed based on previous informal user inputs as well as a method
of assessing current goals in BISON improvement. Input on the survey was a team effort, with numerous
revisions of questions and wording considered. An anonymous survey solicitation was submitted to the
BISON user group emails with the Qualtrics package utilized by the Idaho National Laboratory. The survey
could be completed in under five minutes, and it frequently asked for users’ clarifications on questions.
In this section, the user’s background and overall satisfaction with BISON is discussed. Other results from
the study are integrated throughout this report, in the specific areas which overlap the survey question.
Special attention was paid to users’ evaluations of documentation as noted in Section 7.2.

7.1.1.1 User Background

As the lead question to the survey, Figure 7.1 shows the manner in which users became aware of BISON. This
sampling shows word of mouth as the most frequent method of exposure. The personal recommendation of
users for BISON is a positive factor; however, it shows areas of future improvement. As is discussed later
in this report, this is often due to users coming from the same workplace/background. Increased scientific
publications and conference proceedings are areas of planned exposure improvement in the future which will
help develop a more diverse set of new users.

Figure 7.1: Manner in which users became aware of BISON.
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With respect to the responses in which “other” was selected as the means of BISON introduction, around
50% of the 15 responses came from self-reported Idaho National Laboratory employees. This fraction of
“other,”, as well as a percentage of “word of mouth,” should be taken into consideration to be correlated with
the percentage of National Lab researchers currently using BISON discussed further in this report.
Examining the user composition more deeply, the aspects of the workplace with respect to BISON usage
were requested. Figure 7.2 shows the users’ self- described usage of BISON. Combining this information
with the data from the user group email list, Figure 7.3 shows BISON is primarily used in research at the
national labs. The second most common user base outside the lab system is academia. With Nuclear Energy
University Program (NEUP) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) funding
often tied to software such as BISON, this helps in building a user base outside of the laboratory base.
Lastly, the number of industry users is relatively low. This could be because BISON is free, making it highly
accessible to university users. An area of future growth is to build a larger base of industry users as new
technologies such as microreactors and TRISO fuel are further developed within BISON.

Figure 7.2: BISON user self-described usage. Figure 7.3: Relative percentages of
BISON users.

In order of decreasing numbers, the national labs with registered users consist of

• Idaho National Laboratory (INL)

• Argonne National Laboratory (ANL)

• Oak Ridge National Laboratory (ORNL)

• Los Alamos National Laboratory (LANL)

• United States Nuclear Regulatory Commission (NRC)

• Sandia National Laboratory (SNL)

• Pacific Northwest National Laboratory (PNNL)

• Brookhaven National Laboratory (BNL)

as shown in Figure 7.4.
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Figure 7.4: Relative percentages of national lab users.
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This high INL user number statistic is to be expected since BISON is primarily a MOOSE-based software
developed in-house, which aligns with the laboratory mission. Users from other national labs have similar
research missions and this is reflected in the relative number of users (i.e., LANL has a similar nuclear
energy focus while BNL is centered on fundamental nuclear physics). In addition, national labs from other
countries are represented in the BISON user base. Italy, Australia, Canada, Japan, and Finland are just a few
of the International Laboratory users which share common research focus. Increasing users in the national
labs outside of INL will require additional diversification of the code. One existing method which allows
for this diversification is the existence of the MOOSE Multi-App feature. Figure 7.5 shows users are aware
of this advanced feature. Understanding how to best leverage this feature to diversify the user base will be
investigated in the future.

Figure 7.5: BISON user awareness of Multi-App

Related to the usage of BISON as the simulation tool, the user background with BISON varied in familiarity
and skill level. Figure 7.6 shows the competency BISON users assign to themselves. Newer users, with
experience under 2 years, comprise the majority of respondents, as well as those who did not respond
according to the BISON licensing agreements. More experienced users with over 2 years of experience are
a mixture of earlier adopters and national lab employees. Future growth will focus on newer users as this
group grows.

Figure 7.6: BISON user self-assigned competency
levels.

Figure 7.7: Computer systems on which users run BI-
SON.

User operating systems were collected as part of the survey as shown in Figure 7.7. The current market
predicts between 77% to 87% of the OSmarket to beWindows based [1]. With the majority of users working
on Linux/Mac systems, future growth in this area will be met with the current plan to create a Windows
platform.
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Figure 7.8 shows the users’ familiarity and relative usage of other nuclear simulation codes related to BISON.
While the fact that users primarily are working with BISON, the relative lack of usage of other codes denotes
users choose BISON over other codes for a number of reasons. First and foremost is the correlation of how
users became aware of BISON being primarily driven by introduction from other BISON users. This in
conjunction with the fact that most users are national laboratory employees, drives the usage of software
created by such employees. In addition, the relative cost of operating BISON when compared to the other
software is a driving factor for economically motivated reasons.

Figure 7.8: Familiarity of users with nuclear simulation codes similar to BISON.
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7.1.1.2 User Satisfaction

BISON users’ evaluation of the ease-of-use is shown in Figure 7.9. A strong 4 out of 5 for ease of use
shows BISON is moving toward a software that is easy for users to work with, but improvements can still be
made as shown in Figure 7.10. Documentation remains one of the major areas of concern. There has been
considerable effort to resolve this issue in this area. As discussed in the Section 7.2, as well as Section 7.3,
this is an area of continued focus in both current and future work.

Figure 7.9: BISON user ease-of-use rating. Figure 7.10: BISON user suggestions on areas of
improvement.

The second most valuable area of improvements falls under code performance. For the seven user-written
responses described as "Other," five of the seven responses would fall under this classification as well. This
area can encompass various methods of solution convergence, physical models, as well as relative simulation
speed.
The final most valuable area of improvement for BISON is user interface. This area is under development
with the deployment of BISON in Windows as well as creating NuclearMaterials and drop-down completion
using the Atom editor discussed within this report.

7.1.2 Assisting Users

BISON training is, and continues to be, an important method of helping users more efficiently utilize the
software. Figure 7.11 shows the interest and value users place on these training sessions. Currently, training
classes are run for beginner as well as intermediate skill groups, with advanced user skill groups discussed
as a future addition.

Figure 7.11: BISON user interest in training sessions.
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In addition to improving BISON documentation for users, work was focused on creating new user ease-of-use
for input file construction. This work built on the previously existing “Actions” used within MOOSE and
BISON that users were aware of as seen in Figure 7.12. These actions serve to reduce the complexity and
length of input files users create, while retaining the functionality.

Figure 7.12: User awareness of MOOSE actions.

Users’ evaluation of these “Action” tools were generally positive and considered to be useful as in Figures
7.13 and 7.14.

Figure 7.13: User assessment in Actions helping
create input files.

Figure 7.14: User interest in NuclearMaterials input
file length simplifications.

Current development of “Actions” within Moose and BISON involve the creation of tools to help quickly and
efficiently construct input files based on users’ needs. The typical simulations run by users, as seen in Figure
7.15, helped to influence the most recent development of NuclearMaterials for LWRs. Actions were bro-
ken into fuel and cladding components for LWRs as well as metallic fuel simulations. NuclearMaterials
based on TRISO have not been currently developed, but are planned in the future.

Figure 7.15: Common types of simulations run by BISON users.
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In ensuring that the NuclearMaterials for LWRs best met the needs of users, the survey re-verified themost
common and essential components for these types of simulations. These commonly used features are shown
in Figure 7.16. The specific user responses which fall under “other” expanded on topics which additionally
build upon inelastic stress and creep models. These features already exist within BISON; however, there is no
implementation via Actions to simplify this for users at this time. Currently, elastic stress was developed as a
first pass in creating these classes, with inelastic and creep models being added in future additions. Similarly,
as was done for NuclearMaterialsLWR, user input of NuclearMaterialsMetallicFuel commonly used
features was verified. Figure 7.17 shows thermal models, creep, and cladding failure as the most often used
types of simulations respectively. Again, as was done with the development for NuclearMaterialsLWR, the
first pass for NuclearMaterialsMetallicFuel started with thermal models with future additions planned
to meet user requests.

Figure 7.16: Common types of LWR simulations
run by BISON users.

Figure 7.17: Common types of Metallic Fuel
simulations run by BISON users.

7.1.3 Input File Creation

Most users’ interactions with BISON is through input file creation. As such, considerable effort is devoted to
creating a seamless experience which allows for customization with a simple and efficient method of input.
Figure 7.18 shows that users primarily rework already existing input files to better suit their needs. Debate on
creation of “templates” was discussed, but in allowing for greater flexibility, a dynamic method was chosen
instead.

Figure 7.18: Typical BISON user input file construction methods.
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In developing a dynamic input file creation technique, it was decided to make use of an editor. Taking
advantage of the survey results, as seen in Figure 7.19, Atom was confirmed as the most commonly used
code editor within the BISON user group. Atom had already been utilized to develop additional MOOSE-
based macros with input files and as such was a logical choice for such a task. User opinions on said dynamic
templates via Atom, as seen in Figure 7.20, was extremely positive.

Figure 7.19: Typical BISON user editors used in input file construction.

Figure 7.20: User interest in Atom editor input file template construction.

The Atom-based input file template construction method has been deployed and user satisfaction will be
examined in the future.
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7.2 Documentation Improvements

7.2.1 End-user Input on BISON Documentation

End-user scores on BISON documentation in Figure 7.21 reveal a mean and a mode score of B+ and A-,
respectively. A large number of written complaints came from lack of documentation and the BISON team
has spent a considerable amount of time updating documentation for this reason. A problem that persists
is that some missing documentation comes from MOOSE, which BISON is built on. Users state that often
looking through the source code helps answer their questions; however, this solution is problematic. As the
user base grows, users will not be expected to be as adept in computer science. While looking at the source
code may be a temporary fix, a better long term solution needs to be developed.

Figure 7.21: User grading of BISON documentation.

Related to the satisfaction with the documentation, Figure 7.22 shows the users’ rating of the relative
helpfulness of resources in developing input files. Direct interaction is obviously the most popular method of
answering user questions; however, this is a non-funded area and extremely time consuming on the developer
side. Developing the documentation further alongwith the exampleswill help to remedy this situation. Future
plans have included a FAQ on running simulations as well as "Best Practices" web document. Discussions
about creating future MOOSE and BISON user forums will also help to both reduce confusion on questions
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and issues.

Figure 7.22: Helpfulness of BISON resources.

7.2.2 Full Migration to Tensor-Mechanics

Documentation was refined as part of the move away from the previous mechanics system, Solid Mechanics
(SM), to the new system, referred to as Tensor Mechanics (TM). This effort has been an ongoing project and
documentation outlining the migration of input files for users was developed previously and finalized this
year.
As part of this work, all assessment, example, and test input files where verified to be correctly converted
over to the TM system. The results were compared with the gold files and, if necessary, new gold files were
created.

7.2.2.1 Creation of New Classes

As part of the updates to the system, numerous new classes were created within BISON and MOOSE. Table
7.1 is not a complete list, in that more classes are continually being added.

71



Newly Created Classes
New Class Name Function
NuclearMaterialThermal Creates common thermal kernels

and variables for thermal models
NuclearMaterialHT9 Creates common metallic cladding

material classes to reduce input file
length

NuclearMaterialUPuZr Creates common metallic fuel ma-
terial classes to reduce input file
length

RankTwoInvariant Computes scalar from Rank-2 ten-
sor

RankTwoCylindricalComponent Computes scalar from Rank-2 ten-
sor in direction of cylindrical axis

RankTwoDirectionalComponent Computes scalar from Rank-2 ten-
sor in user specified direction

GenericKernel Allows inheritance from either Ker-
nel or ADKernel

Table 7.1: Newly Created Classes in BISON

7.2.2.2 AD Classes

Numerous clean-ups were implemented on BISON assessment input files as seen in Table 7.2. A major
focus was spent on further utilizing and creating Automatic Differentiation (AD) classes within input files.
AD capabilities in MOOSE underwent a refactoring, which allowed new classes to be constructed quickly
and efficiently.

New AD Classes
Class Name Method of Conversion
ADUO2CreepUpdate Original
ADBurnupAux New
ADFissionRateAux New
ADNeutronHeatSource New
ADAbruptSoftening New
ADComputeSmearedCrackingStress New
ADExponentialSoftening New
ADPowerLawSoftening New
ADZryOxidation New
ADThermalZry New
ADZryElasticityTensor New
ADZryOxideGrowthRate New
ADZryOxideGrowthRateModels New
ADUO2RelocationEigenstrain Original
ADVolumetricSwellingEigenstrain Original
ADThermalFuel New
ADThermalUO2FissionGas New
ADThermalUO2Meso New
ADRankTwoInvariant New
ADRankTwoCylindricalComponent New
ADRankTwoDirectionalComponent New

Table 7.2: Newly created AD classes in BISON
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7.2.3 Assessment Suite Improvements

BISON currently has a set of assessment cases that are run nightly on INL’s high-performance computing
(HPC) platform. Each night, after the assessments have completed running, a report is sent out to the devel-
opment team indicating which cases need direct attention. This suite of cases ensure that the development
of BISON remains consistent and accurate with real-world experiments and case studies.
Furthermore, since June 2019, the development team has tracked performance data associated with each
assessment case. This data has aided in determining performance impact on new additions to MOOSE and
BISON. Also, this data is available to serve as a long-term benchmark of BISON’s performance.
In the past, each nightly run was stored simply as version-controlled repositories on HPC.While this structure
was simple, it quickly became an overwhelming task for anyone interested in ad-hoc analysis of BISON’s
performance. This led the development team to rethink how this data was being stored, and what would
make the process of fetching, analyzing, and reporting data easier.
An SQL database was created to store and organize the data in a tabular fashion. As a result, assessment
case names, tests, and input-files were standardized to create a direct mapping between cases and data. Also,
a unique ID was added to all assessment input-files in-order to efficiently track cases through time (i.e.,
file-name changes, removal of specific cases). An additonal pre-check CIVET test was added to BISON,
ensuring all future additions to the assessment suite contain a unique ID.
Currently, the database contains 35 gigabytes of tabular data that tell a story of BISON’s continual develop-
ment over the past year. Future work includes plans to provide a simple Python API to access the data, as
well as provide dynamic reporting capabilities of BISON’s performance.

7.3 NQA-1 Compliance

BISON follows a software quality assurance (SQA) procedure aligned with the American Society of Me-
chanical Engineers (ASME) Nuclear Quality Assurance Level 1 (NQA-1) requirements, although BISON is
intended only for Nuclear Quality Assurance Level 2 (NQA-2) applications. The use of ASME’s NQA-1
standard is endorsed by the NRC, and is therefore a key requirement for fuel performance analysis software
used in license applications.

7.3.1 NQA-1 Audit

BISON development procedures include, among other things, issue tracking, version control, peer review,
regression testing, testing, and quantification of code coverage [2, 3]. These procedures are flexible enough
to accommodate the modern agile software development process while tracking, through the MOOSEDocs
system, the software design requirements and accompanying documentation for each code element. Two
separate reviews are completed before a source-code change is accepted into BISON: an independent code
review of the individual code change, and a technical lead review when a version of BISON is given an
official version tag.
In February 2020 the BISON code, in conjunction with the MOOSE framework code, underwent a Nuclear
QualityAssurance (NQA-1) audit, performed by software quality assessors fromASME’sNQA-1 committee,
and received a rating of ’Effective.’ This ensured that theMOOSE framework andBISONmeetDepartment of
Energy and ASME NQA-1 requirements. MOOSE and BISON can be used in safety software applications
(QL-1 and QL-2), including at ATR, which requires an NQA-1 pedigree. The assessors noted good
coordination and solid expertise among staff, few product-related issues, and a high degree of technology
use for development (MOOSE tools & methods).
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7.3.2 MOOSEDOCS: In-Code Documentation System

Doxygen has and continues to be used for documentation within the C++code for MOOSE and BISON.
However, this type of documentation is often only helpful in understanding the software development aspects.
To help better explain the physics and theory behind the software a more robust style of documentation is
needed.
“MOOSEDocs is a stand-alone Python tool within MOOSE that includes the ability to convert markdown
to HTML, LATEX, and presentations” [4]. MOOSEDocs was based on MkDocs, but has independently
developed to better meet the capabilities and resiliency requirements for MOOSE and BISON. The flexibility
of this system allows documentation to be integrated and required when new code is implemented.
Evenwith requirements, there existed a significant amount of incomplete ormissing documentation. To better
meet NQA-1 standards, a significant effort in resolving this missing documentation was undertaken. Multiple
group efforts as well as individual efforts helped to reduce the numbers of documentation shortcomings. A
partial list of the fixes to the documentation is shown in Table 7.3. During themigration fromSolidMechanics
to Tensor Mechanics, certain classes were removed from BISON, and as such the missing documentation
associated with said classes was deemed unnecessary. In addition, there is an ORNL milestone effort with a
pending merger in BISON dealing with “thermochimica” related classes (M3MS-19OR0201043 Verify this
milestone number?).
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Documentation Improvements
Name Method of Improve-

ment
moose/modules/xfem/doc/content/modules/xfem/index.md Written documentation
doc/content/source/actions/CoolantChannelBCAction.md Removal of class
doc/content/source/actions/CoolantChannelUserObjectAction.md Written documentation
doc/content/source/actions/CoolantChannelMaterialAction.md Written documentation
doc/content/source/auxkernels/BurnupMetalAux.md Written documentation
doc/content/source/auxkernels/CoolantAux.md Written documentation
doc/content/source/auxkernels/GapValueDefaultSameValue.md Written documentation
doc/content/source/auxkernels/OxygenThermochimicaAux.md In Progress
doc/content/source/auxkernels/PlenumTemperatureDistance.md Written documentation
doc/content/source/auxkernels/PorosityAuxUO2.md Written documentation
doc/content/source/auxkernels/PowerFunctionAux.md Removal of class
doc/content/source/auxkernels/Radius.md Written documentation
doc/content/source/bcs/coolant/ConvectiveFluxLWRBC.md Written documentation
doc/content/source/bcs/HydrogenFluxBC.md Removal of class
doc/content/source/bcs/HydrogenFluxBC_simplified.md Removal of class
doc/content/source/bcs/PostprocessorBulkCoolant.md Written documentation
doc/content/source/bcs/REBEKADirichletBC.md Written documentation
doc/content/source/bcs/StanNeumannBC.md Removal of class
doc/content/source/ics/UO2PXOxygenic.md Written documentation
doc/content/source/kernels/CompositeHeatConduction.md Written documentation
doc/content/source/kernels/ConstituentDiffusion.md Written documentation
doc/content/source/kernels/HZrHSource.md In progress
doc/content/source/materials/CoolantChannelMaterial.md Written documentation
doc/content/source/materials/CreepUPuZrModel.md Removal of class
doc/content/source/materials/GapConductanceLWR.md Removal of class
doc/content/source/materials/MaterialHZrH.md In progress
doc/content/source/materials/PorosityMOX.md Written documentation
doc/content/source/materials/RadioActiveDecayConstant.md Removal of class
doc/content/source/material/ThermalExpansionUPuZr.md Removal of class
doc/content/source/materials/ThermalNa.md Written documentation
doc/content/source/materials/ThermalUO2PX.md Written documentation
doc/content/source/mesh/SmearedPelletMesh.md Written documentation
doc/content/source/mesh/TRISO1DMesh.md Written documentation
doc/content/source/userobject/CoolantChannelUserObject.md Written documentation
doc/content/source/userobject/PlenumPressureUserObject.md Written documentation
doc/content/syntax/NuclearMaterials/UPuZr/index.md Written documentation
doc/content/syntax/thermochimica_index.md In progress
doc/content/tutorials/advanced_fuels/triso_tutorial/buffer.md Written documentation
doc/content/tutorials/advanced_fuels/triso_tutorial/kernel.md Written documentation
doc/content/tutorials/advanced_fuels/triso_tutorial/matrix.md Written documentation
doc/content/tutorials/advanced_fuels/triso_tutorial/pyc_layer.md Written documentation
doc/content/tutorials/advanced_fuels/triso_tutorial/sic_layer.md Written documentation
doc/content/tutorials/advanced_fuels/triso_tutorial/triso_geometry.md Written documentation

Table 7.3: Documentation improvements in BISON
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8 Future work

The following sections highlight proposed milestones and activities that logically follow prior work. The
actual work, of course, depends on the FY-21 budget.

8.1 Anisotropic material model improvements

The focus on new fuel and fuel-related materials such as metallic fuels, uranium nitride, and graphite are
drivers for several new capabilities at the MOOSE and BISON levels. Anisotropic materials require an
upgrade of our inelastic mechanics capabilities, which currently heavily rely on radial return mapping and
the assumption of isotropic stiffness. We plan to add additional code paths to support fully anisotropic ma-
terials, without degrading the performance for modeling isotropic materials. Contact remains a challenging
component of our modeling toolkit. While important improvements have been made through mortar and
automatic differentiation we’d like to explore further approaches, such as Nitsche’s method, which yields to
better conditioned systems.

8.2 Reduced order modeling tools

Develop required foundational tools for performing reduced order modeling (ROMs) which will accelerate
models informed form lower length-scale simulations. This entails developing ROMs for BISON simulations
based on machine-learning techniques such as recurrent neural networks. Example applications would be
surrogate models for individual fuel rods to be used in full-core simulations including temperature and
dimensional changes under basic normal operation as well as failure modes such as clad burst under off-
normal conditions, and surrogate models for thermal conductivity or metallic fuel swelling and growth
trained on mesoscale simulations. Future applications of ROMs will enable the development of inverse UQ
capabilities.

8.3 Adaptive meshing and stateful material compatibility

The vast majority of BISON models use stateful material properties, due to the use of large deformation
mechanics and non-linear material properties. Currently this precludes us from taking advantage of the
adaptive meshing capabilities in MOOSE. For pellet clad mechanical interaction with stress concentration
hot spots, we anticipate mesh adaptivity to deliver significant performance improvements. Similar locally
concentrated phenomena occur in TRISO andmetallic fuel. As a stretch goal wewould explore the interaction
of mesh refinement and XFEM.

8.4 Cracking/damage model robustness

Improve the robustness and expand on the capabilities of existing cracking/damage models by generalizing
the existing outer solution iteration technique used currently for XFEM to allow its use with other fracture
models for managing damage evolution. This would allow for incrementally updating the damage state in
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a subset of the cracking elements, and can be leveraged to improve the robustness of a variety of fracture
modeling techniques, including smeared cracking, peridynamics, cohesive zone models, and phase-field
fracture. In addition, during that iteration, failed elements can be deleted, which would be useful for multiple
applications such as LWR fuel fragmentation modeling and cladding rupture.

8.5 Software maintenance and support

Maintain software quality standard, provide user support and training, improve usability and documentation.
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